亚洲色影视在线播放_国产一区+欧美+综合_久久精品少妇视频_制服丝袜国产网站

學習方法

高一數(shù)學知識點

時間:2022-11-15 01:29:41 學習方法 我要投稿
  • 相關(guān)推薦

高一數(shù)學知識點(精選5篇)

  高一數(shù)學集合重要知識點大全就在下面,高一數(shù)學中集合有哪些知識點需要掌握?下面是小編給大家?guī)淼母咭粩?shù)學集合重要知識點,希望對你有幫助。

高一數(shù)學知識點(精選5篇)

  高一數(shù)學知識點 篇1

  1、集合的含義:

  “集合”這個詞首先讓我們想到的是上體育課或者開會時老師經(jīng)常喊的“全體集合”。

  數(shù)學上的“集合”和這個意思是一樣的,只不過一個是動詞一個是名詞而已。

  所以集合的含義是:某些指定的對象集在一起就成為一個集合,簡稱集,其中每一個對象叫元素。

  比如高一二班集合,那么所有高一二班的同學就構(gòu)成了一個集合,每一個同學就稱為這個集合的元素。


  2、集合的表示

  通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。

  a、b、c就是集合A中的`元素,記作a∈A,相反,d不屬于集合A,記作dA。

  有一些特殊的集合需要記憶:

  非負整數(shù)集(即自然數(shù)集)N正整數(shù)集N*或N+

  整數(shù)集Z有理數(shù)集Q實數(shù)集R

  集合的表示方法:列舉法與描述法。

 、倭信e法:{a,b,c……}

 、诿枋龇ǎ簩⒓现械脑氐墓矊傩悦枋龀鰜。

  如{xR|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}

 、壅Z言描述法:例:{不是直角三角形的三角形}

  例:不等式x-3>2的解集是{xR|x-3>2}或{x|x-3>2}

  強調(diào):描述法表示集合應(yīng)注意集合的代表元素

  A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。

  集合A中是數(shù)組元素(x,y),集合B中只有元素y。


  3、集合的三個特性

  (1)無序性

  指集合中的元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。

  例題:集合A={1,2},B={a,b},若A=B,求a、b的值。

  解:,A=B

  注意:該題有兩組解。

  (2)互異性

  指集合中的元素不能重復,A={2,2}只能表示為{2}

  (3)確定性

  集合的確定性是指組成集合的元素的性質(zhì)必須明確,不允許有模棱兩可、含混不清的情況。

  高一數(shù)學知識點 篇2

  1.子集,A包含于B,有兩種可能

  (1)A是B的`一部分,

  (2)A與B是同一集合,A=B,A、B兩集合中元素都相同。

  反之:集合A不包含于集合B。

  2.不含任何元素的集合叫做空集,記為Φ。

  Φ是任何集合的子集。

  4、有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-2個非空真子集。

  如A={1,2,3,4,5},則集合A有25=32個子集,25-1=31個真子集,25-2=30個非空真子集。

  高一數(shù)學知識點 篇3

  集合具有某種特定性質(zhì)的事物的總體。這里的事物可以是人,物品,也可以是數(shù)學元素。

  例如:

  1、分散的人或事物聚集到一起;使聚集:緊急~。

  2、數(shù)學名詞。一組具有某種共同性質(zhì)的數(shù)學元素:有理數(shù)的~。

  3、口號等等。集合在數(shù)學概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學的基本概念,專門研究集合的理論叫做集合論?低校–antor,G、F、P、,1845年1918年,德國數(shù)學家先驅(qū),是集合論的,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學的所有領(lǐng)域。

  集合,在數(shù)學上是一個基礎(chǔ)概念。

  什么叫基礎(chǔ)概念?基礎(chǔ)概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下定義。

  集合是把人們的直觀的或思維中的某些確定的能夠區(qū)分的.對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。

  集合與集合之間的關(guān)系

  某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做?占侨魏渭系淖蛹侨魏畏强占恼孀蛹。任何集合是它本身的子集。子集,真子集都具有傳遞性。

  (說明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作AB。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作AB。中學教材課本里將符號下加了一個符號,不要混淆,考試時還是要以課本為準。所有男人的集合是所有人的集合的真子集。)

  高一數(shù)學知識點 篇4

  圓的方程定義:

  圓的標準方程(x—a)2+(y—b)2=r2中,有三個參數(shù)a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。

  直線和圓的位置關(guān)系:

  1、直線和圓位置關(guān)系的判定方法一是方程的觀點,即把圓的方程和直線的方程聯(lián)立成方程組,利用判別式Δ來討論位置關(guān)系。

 、佴>0,直線和圓相交、②Δ=0,直線和圓相切、③Δ<0,直線和圓相離。

  方法二是幾何的'觀點,即把圓心到直線的距離d和半徑R的大小加以比較。

  ①dR,直線和圓相離、

  2、直線和圓相切,這類問題主要是求圓的切線方程、求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況。

  3、直線和圓相交,這類問題主要是求弦長以及弦的中點問題。

  切線的性質(zhì)

 、艌A心到切線的距離等于圓的半徑;

  ⑵過切點的半徑垂直于切線;

  ⑶經(jīng)過圓心,與切線垂直的直線必經(jīng)過切點;

 、冉(jīng)過切點,與切線垂直的直線必經(jīng)過圓心;

  當一條直線滿足

 。1)過圓心;

 。2)過切點;

 。3)垂直于切線三個性質(zhì)中的兩個時,第三個性質(zhì)也滿足。

  切線的判定定理

  經(jīng)過半徑的外端點并且垂直于這條半徑的直線是圓的切線。

  切線長定理

  從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角。

  高一數(shù)學知識點 篇5

  一、定義與定義式:

  自變量x和因變量有如下關(guān)系:

  =x+b

  則此時稱是x的一次函數(shù)。

  特別地,當b=0時,是x的正比例函數(shù)。

  即:=x(為常數(shù),≠0)

  二、一次函數(shù)的性質(zhì):

  1.的變化值與對應(yīng)的x的變化值成正比例,比值為

  即:=x+b(為任意不為零的實數(shù)b取任何實數(shù))

  2.當x=0時,b為函數(shù)在軸上的截距。

  三、一次函數(shù)的圖像及性質(zhì):

  1.作法與圖形:通過如下3個步驟

 。1)列表;

 。2)描點;

 。3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和軸的交點)

  2.性質(zhì):(1)在一次函數(shù)上的任意一點P(x,),都滿足等式:=x+b。(2)一次函數(shù)與軸交點的`坐標總是(0,b),與x軸總是交于(-b/,0)正比例函數(shù)的圖像總是過原點。

  3.,b與函數(shù)圖像所在象限:

  當>0時,直線必通過一、三象限,隨x的增大而增大;

  當<0時,直線必通過二、四象限,隨x的增大而減小。

  當b>0時,直線必通過一、二象限;

  當b=0時,直線通過原點

  當b<0時,直線必通過三、四象限。

  特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。

  這時,當>0時,直線只通過一、三象限;當<0時,直線只通過二、四象限。

  四、確定一次函數(shù)的表達式:

  已知點A(x1,1);B(x2,2),請確定過點A、B的一次函數(shù)的表達式。

 。1)設(shè)一次函數(shù)的表達式(也叫解析式)為=x+b。

  (2)因為在一次函數(shù)上的任意一點P(x,),都滿足等式=x+b。所以可以列出2個方程:1=x1+b……①和2=x2+b……②

 。3)解這個二元一次方程,得到,b的值。

 。4)最后得到一次函數(shù)的表達式。

  五、一次函數(shù)在生活中的應(yīng)用:

  1.當時間t一定,距離s是速度v的一次函數(shù)。s=vt。

  2.當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設(shè)水池中原有水量S。g=S-ft。

  六、常用公式:(不全,希望有人補充)

  1.求函數(shù)圖像的值:(1-2)/(x1-x2)

  2.求與x軸平行線段的中點:|x1-x2|/2

  3.求與軸平行線段的中點:|1-2|/2

  4.求任意線段的長:√(x1-x2)^2+(1-2)^2(注:根號下(x1-x2)與(1-2)的平方和)

【高一數(shù)學知識點】相關(guān)文章:

初二數(shù)學知識點07-20

高一上政治知識點總結(jié)06-04

數(shù)學分析知識點總結(jié)09-01

高中數(shù)學概率知識點12-22

高一數(shù)學教案12-09

高一優(yōu)秀數(shù)學教案12-22

高一數(shù)學的學習技巧09-23

高一數(shù)學求值域方法10-23

高一數(shù)學課件ppt07-23

高三數(shù)學知識點和學習方法06-05