亚洲色影视在线播放_国产一区+欧美+综合_久久精品少妇视频_制服丝袜国产网站

總結(jié)

數(shù)學分析知識點總結(jié)

時間:2024-09-10 06:34:40 總結(jié) 我要投稿
  • 相關(guān)推薦

數(shù)學分析知識點總結(jié)

  在日復一日的學習中,大家都沒少背知識點吧?知識點在教育實踐中,是指對某一個知識的泛稱。想要一份整理好的知識點嗎?下面是小編整理的數(shù)學分析知識點總結(jié),希望能夠幫助到大家。

數(shù)學分析知識點總結(jié)

  數(shù)學分析知識點總結(jié) 篇1

  考點一:集合與簡易邏輯

  集合部分一般以選擇題出現(xiàn),屬容易題。重點考查集合間關(guān)系的理解和認識。近年的試題加強了對集合計算化簡能力的考查,并向無限集發(fā)展,考查抽象思維能力。在解決這些問題時,要注意利用幾何的直觀性,并注重集合表示方法的轉(zhuǎn)換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關(guān)系、邏輯聯(lián)結(jié)詞、“充要關(guān)系”、命題真?zhèn)蔚呐袛、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達數(shù)學解題過程和邏輯推理。

  考點二:函數(shù)與導數(shù)

  函數(shù)是高考的重點內(nèi)容,以選擇題和填空題的為載體針對性考查函數(shù)的定義域與值域、函數(shù)的性質(zhì)、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對數(shù)、冪函數(shù))的應用等,分值約為10分,解答題與導數(shù)交匯在一起考查函數(shù)的性質(zhì)。導數(shù)部分一方面考查導數(shù)的運算與導數(shù)的幾何意義,另一方面考查導數(shù)的簡單應用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式出現(xiàn),屬于容易題和中檔題,三是導數(shù)的綜合應用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的.形式出現(xiàn),如一些不等式恒成立問題、參數(shù)的取值范圍問題、方程根的個數(shù)問題、不等式的證明等問題。

  考點三:三角函數(shù)與平面向量

  一般是2道小題,1道綜合解答題。小題一道考查平面向量有關(guān)概念及運算等,另一道對三角知識點的補充。大題中如果沒有涉及正弦定理、余弦定理的應用,可能就是一道和解答題相互補充的三角函數(shù)的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數(shù)形結(jié)合思想在解題中的應用。向量重點考查平面向量數(shù)量積的概念及應用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結(jié)合,解決角度、垂直、共線等問題是“新熱點”題型。

  考點四:數(shù)列與不等式

  不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規(guī)劃問題、基本不等式的應用等,通常會在小題中設置1到2道題。對不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導數(shù)等解答題中進行考查。在選擇、填空題中考查等差或等比數(shù)列的概念、性質(zhì)、通項公式、求和公式等的靈活應用,一道解答題大多凸顯以數(shù)列知識為工具,綜合運用函數(shù)、方程、不等式等解決問題的能力,它們都屬于中、高檔題目。

  考點五:立體幾何與空間向量

  一是考查空間幾何體的結(jié)構(gòu)特征、直觀圖與三視圖;二是考查空間點、線、面之間的位置關(guān)系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求)。在高考試卷中,一般有1~2個客觀題和一個解答題,多為中檔題。

  考點六:解析幾何

  一般有1~2個客觀題和1個解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關(guān)系、圓錐曲線的定義應用、標準方程的求解、離心率的計算等,解答題則主要考查直線與橢圓、拋物線等的位置關(guān)系問題,經(jīng)常與平面向量、函數(shù)與不等式交匯,考查一些存在性問題、證明問題、定點與定值、最值與范圍問題等。

  考點七:算法復數(shù)推理與證明

  高考對算法的考查以選擇題或填空題的形式出現(xiàn),或給解答題披層“外衣”?疾榈臒狳c是流程圖的識別與算法語言的閱讀理解。算法與數(shù)列知識的網(wǎng)絡交匯命題是考查的主流。復數(shù)考查的重點是復數(shù)的有關(guān)概念、復數(shù)的代數(shù)形式、運算及運算的幾何意義,一般是選擇題、填空題,難度不大。推理證明部分命題的方向主要會在函數(shù)、三角、數(shù)列、立體幾何、解析幾何等方面,單獨出題的可能性較小。對于理科,數(shù)學歸納法可能作為解答題的一小問。

  數(shù)學分析知識點總結(jié) 篇2

  角:

 。1)角的靜態(tài)定義:具有公共端點的兩條不重合的射線組成的圖形叫做角。

  這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。

 。2)角的動態(tài)定義:一條射線繞著它的端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形叫做角。

  所旋轉(zhuǎn)射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊

  角的符號:∠

  角的種類:角的大小與邊的長短沒有關(guān)系;角的大小決定于角的兩條邊張開的程度,張開的越大,角就越大,相反,張開的越小,角則越小。

  在動態(tài)定義中,取決于旋轉(zhuǎn)的`方向與角度。

  角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優(yōu)角、劣角、0角這10種。

  以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。

 。1)銳角:大于0°,小于90°的角叫做銳角。

  (2)直角:等于90°的角叫做直角。

  (3)鈍角:大于90°而小于180°的角叫做鈍角。

  乘法:

  乘法是指一個數(shù)或量,增加了多少倍。例如4乘5,就是4增加了5倍率,也可以說成5個4連加。

  乘法算式中各數(shù)的名稱:

  “×”是乘號,乘號前面和后面的數(shù)叫做因數(shù),“=”是等于號,等于號后面的數(shù)叫做積。

  例:10(因數(shù))×(乘號)200(因數(shù))=(等于號)2000(積)

  平行:

  在平面上兩條直線、空間的兩個平面或空間的一條直線與一平面之間沒有任何公共點時,稱它們平行。如圖直線AB平行于直線CD,記作AB∥CD。平行線永不相交。

  垂直:

  兩條直線、兩個平面相交,或一條直線與一個平面相交,如果交角成直角,叫做互相垂直。

  平行四邊形:

  在同一平面內(nèi)有兩組對邊分別平行的四邊形叫做平行四邊形。

  梯形:

  梯形是指一組對邊平行而另一組對邊不平行的四邊形。

  平行的兩邊叫做梯形的底邊,其中長邊叫下底,短邊叫上底;也可以單純的認為上面的一條叫上底,下面一條叫下底。不平行的兩邊叫腰;夾在兩底之間的垂線段叫梯形的高。

  除法:

  除法法則:除數(shù)是幾位,先看被除數(shù)的前幾位,前幾位不夠除,多看一位,除到哪位,商就寫在哪位上面,不夠商一,0占位。余數(shù)要比除數(shù)小,如果商是小數(shù),商的小數(shù)點要和被除數(shù)的小數(shù)點對齊;如果除數(shù)是小數(shù),要化成除數(shù)是整數(shù)的除法再計算。

  數(shù)學分析知識點總結(jié) 篇3

  一、基本知識

  一、數(shù)與代數(shù)

  A、數(shù)與式:

  1、有理數(shù):①整數(shù)→正整數(shù),0,負整數(shù);

 、诜謹(shù)→正分數(shù),負分數(shù)

  數(shù)軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。

 、谌魏我粋有理數(shù)都可以用數(shù)軸上的一個點來表示。

 、廴绻麅蓚數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。

  ④數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。

  絕對值:①在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值。

 、谡龜(shù)的絕對值是他的本身、負數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個負數(shù)比較大小,絕對值大的反而小。

  有理數(shù)的運算:帶上符號進行正常運算。

  加法:

  ①同號相加,取相同的符號,把絕對值相加。

  ②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。

  ③一個數(shù)與0相加不變。

  減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  乘法:①兩數(shù)相乘,同號得正,異號得負,絕對值相乘。

  ②任何數(shù)與0相乘得0。

  ③乘積為1的兩個有理數(shù)互為倒數(shù)。

  除法:①除以一個數(shù)等于乘以一個數(shù)的倒數(shù)。

 、0不能作除數(shù)。

  乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)或指數(shù)。

  混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

  2、實數(shù)

  無理數(shù)

  無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù),例如:π=3.1415926…

  平方根:①如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。

  ②如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。

 、垡粋正數(shù)有2個平方根;0的平方根為0;負數(shù)沒有平方根。

 、芮笠粋數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。

  立方根:①如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。

 、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。

 、矍笠粋數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。

  實數(shù):①實數(shù)分有理數(shù)和無理數(shù)。

 、谠趯崝(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣;

  ③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。

  3、代數(shù)式

  代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。

  合并同類項:①所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項;②把同類項合并成一項就叫做合并同類項。

 、墼诤喜⑼愴棔r,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

  4、整式與分式

  整式:①數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。

  ②一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。

  ③一個多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。

  整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。

  冪的運算:

  A^M+A^N=A^(M+N)

 。ˋ^M)^N=A^(MN

 。

  (A/B)^N=A^N/B^N

  除法一樣。

  整式的乘法:

  ①單項式與單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。

 、趩雾検脚c多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。

  ③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

  公式兩條:平方差公式:A^2-B^2=(A+B)(A-B);

  完全平方公式:(A+B)^2=A^2+2AB+B^2;(A-B)^2=A^2-2AB+B^2。

  整式的除法:①單項式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。

 、诙囗検匠詥雾検,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

  分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

  方法:提公因式法、運用公式法、分組分解法、十字相乘法。

  分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。

 、诜质降姆肿优c分母同乘以或除以同一個不等于0的整式,分式的值不變。

  分式的運算:

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

  除法:除以一個分式等于乘以這個分式的倒數(shù)。

  加減法:①同分母分式相加減,分母不變,把分子相加減。

 、诋惙帜傅姆质较韧ǚ郑癁橥帜傅姆质,再加減。

  分式方程:①分母中含有未知數(shù)的方程叫分式方程。

 、谑狗匠痰姆帜笧0的解稱為原方程的增根。

  B、方程與不等式

  1、方程與方程組

  一元一次方程:①在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。

 、诘仁絻蛇呁瑫r加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。

  解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。

  二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的.方程叫做二元一次方程。

  二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。

  適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。

  二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。

  解二元一次方程組的方法:代入消元法;加減消元法。

  一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程:ax^2+bx+c=0;

  1)一元二次方程的二次函數(shù)的關(guān)系

  大家已經(jīng)學過二次函數(shù)(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數(shù)來表示,其實一元二次方程也是二次函數(shù)的一個特殊情況,就是當Y=0的時候就構(gòu)成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數(shù)中,圖像與X軸的交點。也就是該方程的解了

  2)一元二次方程的解法

  大家知道,二次函數(shù)有頂點式(-b/2a

  ,4ac-b^2/4a),這大家要記住,很重要,因為在上面已經(jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解

  (1)配方法

  利用配方,使方程變?yōu)橥耆椒焦,在用直接開平方法去求出解

  (2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解

  (3)公式法

  這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b^2-4ac)]}/2a,X2={-b-√[b^2-4ac)]}/2a

  3)解一元二次方程的步驟:

 。1)配方法的步驟:

  先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最后配成完全平方公式

  (2)分解因式法的步驟:

  把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式

  (3)公式法

  就把一元二次方程的各系數(shù)分別代入,這里二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c

  4)韋達定理

  利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a

  也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數(shù),在題目中很常用

  5)一元二次方程根的情況

  利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao

  ta”,而△=b2-4ac,這里可以分為3種情況:

  I當△>0時,一元二次方程有2個不相等的實數(shù)根;

  II當△=0時,一元二次方程有2個相同的實數(shù)根;

  III當△B,則A+C>B+C;

  在不等式中,如果減去同一個數(shù)(或加上一個負數(shù)),不等式符號不改向;

  例如:如果A>B,則A-C>B-C;

  在不等式中,如果乘以同一個正數(shù),不等式符號不改向;

  例如:如果A>B,則A*C>B*C(C>0);

  在不等式中,如果乘以同一個負數(shù),不等號改向;

  例如:如果A>B,則A*C<B*C(C<0);

  如果不等式乘以0,那么不等號改為等號;

  所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘的數(shù)就不等于0,否則不等式不成立;

  3、函數(shù)

  變量:因變量Y,自變量X。

  在用圖像表示變量之間的關(guān)系時,通常用水平方向的數(shù)軸上的點自變量,用豎直方向的數(shù)軸上的點表示因變量。

  一次函數(shù):①若兩個變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。

 、诋擝=0時,稱Y是X的正比例函數(shù)。

  一次函數(shù)的圖像:

 、侔岩粋函數(shù)的自變量X與對應的因變量Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內(nèi)描出它的對應點,所有這些點組成的圖形叫做該函數(shù)的圖像。

 、谡壤瘮(shù)Y=KX的圖像是經(jīng)過原點的一條直線。

 、墼谝淮魏瘮(shù)中,當K〈0,B〈O時,則經(jīng)234象限;

  當K〈0,B〉0時,則經(jīng)124象限;

  當K〉0,B〈0時,則經(jīng)134象限;

  當K〉0,B〉0時,則經(jīng)123象限。

 、墚擪〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。

  二空間與圖形

  A、圖形的認識

  1、點,線,面

  點,線,面:①圖形是由點,線,面構(gòu)成的。

 、诿媾c面相交得線,線與線相交得點。

 、埸c動成線,線動成面,面動成體。

  展開與折疊:①在棱柱中,任何相鄰的兩個面的交線叫做棱,側(cè)棱是相鄰兩個側(cè)面的交線,棱柱的所有側(cè)棱長相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。

 、贜棱柱就是底面圖形有N條邊的棱柱,上下底面就是N邊形。

  截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。

  視圖:主視圖,左視圖,俯視圖。

  多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

  弧、扇形:①由一條弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫扇形。

 、趫A可以分割成若干個扇形。

  2、角

  線:①線段有兩個端點。

 、趯⒕段向一個方向無限延長就形成了射線。射線只有一個端點。

 、蹖⒕段的兩端無限延長就形成了直線。直線沒有端點。

  ④經(jīng)過兩點有且只有一條直線。

  比較長短:①兩點之間的所有連線中,線段最短。兩點之間直線最短。

 、趦牲c之間線段的長度,叫做這兩點之間的距離。

  角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。

 、谝欢鹊1/60是一分,一分的1/60是一秒。即:60分為1度,60秒為1分。

  角的比較:①角也可以看成是由一條射線繞著他的端點旋轉(zhuǎn)而成的。

 、谝粭l射線繞著他的端點旋轉(zhuǎn),當終邊和始邊成一條直線時,所成的角叫做平角,180。始邊繼續(xù)旋轉(zhuǎn),當他又和始邊重合時,所成的角叫做周角,360。

  ③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。

 、诮(jīng)過直線外一點,有且只有一條直線與這條直線平行。

 、廴绻麅蓷l直線都與第3條直線平行,那么這兩條直線互相平行。

  垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。

 、诨ハ啻怪钡膬蓷l直線的交點叫做垂足。

 、燮矫鎯(nèi),過一點有且只有一條直線與已知直線垂直。

  垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

  垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關(guān)于畫法,后面會講)一定要把線段穿出2點。

  垂直平分線定理:

  性質(zhì)定理:在垂直平分線上的點到該線段兩端點的距離相等;

  判定定理:到線段2端點距離相等的點在這線段的垂直平分線上;

  角平分線:把一個角平分的射線叫該角的角平分線。

  定義中有幾個要點要注意一下的:角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角的角平分線就是到角兩邊距離相等的點的集合。

  性質(zhì)定理:角平分線上的點到該角兩邊的距離相等;

  判定定理:到角的兩邊距離相等的點在該角的角平分線上;

  正方形:一組鄰邊相等的矩形是正方形

  性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)

  判定:1、對角線相等的菱形2、鄰邊相等的矩形

  二、基本定理

  1、過兩點有且只有一條直線

  2、兩點之間線段最短

  3、同角或等角的補角相等

  ——補角=180-角度。

  4、同角或等角的余角相等——余角=90-角度。

  5、過一點有且只有一條直線和已知直線垂直

  6、直線外一點與直線上各點連接的所有線段中,垂線段最短

  7、平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行

  8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9、同位角相等,兩直線平行

  10、內(nèi)錯角相等,兩直線平行

  11、同旁內(nèi)角互補,兩直線平行

  12、兩直線平行,同位角相等

  13、兩直線平行,內(nèi)錯角相等

  14、兩直線平行,同旁內(nèi)角互補

  15、定理

  三角形兩邊的和大于第三邊

  16、推論

  三角形兩邊的差小于第三邊

  17、三角形內(nèi)角和定理:

  三角形三個內(nèi)角的和等于180°

  18、推論1

  直角三角形的兩個銳角互余

  19、推論2

  三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和

  20、推論3

  三角形的一個外角大于任何一個和它不相鄰的內(nèi)角

  21、全等三角形的對應邊、對應角相等

  22、邊角邊公理(SAS):有兩邊和它們的夾角對應相等的兩個三角形全等

  23、角邊角公理(

  ASA):有兩角和它們的夾邊對應相等的

  兩個三角形全等

  24、推論(AAS):有兩角和其中一角的對邊對應相等的兩個三角形全等

  25、邊邊邊公理(SSS):有三邊對應相等的兩個三角形全等

  26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對應相等的兩個直角三角形全等

  27、定理1

  在角的平分線上的點到這個角的兩邊的距離相等

  28、定理2

  到一個角的兩邊的距離相同的點,在這個角的平分線上

  29、角的平分線是到角的兩邊距離相等的所有點的集合

  30、推論1

  等腰三角形頂角的平分線平分底邊并且垂直于底邊

  31、推論2等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;

  32、推論3

  等邊三角形的各角都相等,并且每一個角都等于60°

  33、等腰三角形的判定定理

  如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

  34、等腰三角形的性質(zhì)定理

  等腰三角形的兩個底角相等

  (即等邊對等角)

  35、推論1

  三個角都相等的三角形是等邊三角形

  36、推論

  有一個角等于60°的等腰三角形是等邊三角形

  37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

  38、直角三角形斜邊上的中線等于斜邊上的一半

  39、定理

  線段垂直平分線上的點和這條線段兩個端點的距離相等

  40、逆定理

  和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

  41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

  42、定理1

  關(guān)于某條直線對稱的兩個圖形是全等形

  43、定理

  如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應點連線的垂直平分線

  44、定理3

  兩個圖形關(guān)于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上

  45、逆定理

  如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱

  46、勾股定理

  直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47、勾股定理的逆定理

  如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個三角形是直角三角形

  48、定理

  四邊形的內(nèi)角和等于360°

  49、四邊形的外角和等于360°

  50、多邊形內(nèi)角和定理

  n邊形的內(nèi)角的和等于(n-2)×180°

  51、推論

  任意多邊的外角和等于360°

  52、平行四邊形性質(zhì)定理1

  平行四邊形的對角相等

  53、平行四邊形性質(zhì)定理2

  平行四邊形的對邊相等

  54、推論

  夾在兩條平行線間的平行線段相等

  55、平行四邊形性質(zhì)定理3

  平行四邊形的對角線互相平分

  56、平行四邊形判定定理1

  兩組對角分別相等的四邊形是平行四邊形

  57、平行四邊形判定定理2

  兩組對邊分別相等的四邊

  形是平行四邊形

  58、平行四邊形判定定理3

  對角線互相平分的四邊形是平行四邊形

  59、平行四邊形判定定理4

  一組對邊平行相等的四邊形是平行四邊形

  60、矩形性質(zhì)定理1

  矩形的四個角都是直角

  61、矩形性質(zhì)定理2

  矩形的對角線相等

  62、矩形判定定理1

  有三個角是直角的四邊形是矩形

  63、矩形判定定理2

  對角線相等的平行四邊形是矩形

  64、菱形性質(zhì)定理1

  菱形的四條邊都相等

  65、菱形性質(zhì)定理2

  菱形的對角線互相垂直,并且每一條對角線平分一組對角

  66、菱形面積=對角線乘積的一半,即S=(a×b)÷2

  67、菱形判定定理1

  四邊都相等的四邊形是菱形

  68、菱形判定定理2

  對角線互相垂直的平行四邊形是菱形

  69、正方形性質(zhì)定理1

  正方形的四個角都是直角,四條邊都相等

  70、正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  71、定理1

  關(guān)于中心對稱的兩個圖形是全等的

  72、定理2

  關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分

  73、逆定理

  如果兩個圖形的對應點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱

  74、等腰梯形性質(zhì)定理

  等腰梯形在同一底上的兩個角相等

  75、等腰梯形的兩條對角線相等

  76、等腰梯形判定定理

  在同一底上的兩個角相等的梯

  形是等腰梯形

  77、對角線相等的梯形是等腰梯形

  78、平行線等分線段定理

  如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79、推論1

  經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰

  80、推論2

  經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊

  81、三角形中位線定理

  三角形的中位線平行于第三邊,并且等于它的一半

  82、梯形中位線定理

  梯形的中位線平行于兩底,并且等于兩底和的一半

  L=(a+b)÷2

  S=L×h

  83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc

  如果

  ad=bc,那么a:b=c:d

  84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86、平行線分線段成比例定理

  三條平行線截兩條直線,所得的對應線段成比例

  87、推論

  平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

  88、定理

  如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊

  89、平行于三角形的一邊,并且和其他兩邊相交的直線,

  所截得的三角形的三邊與原三角形三邊對應成比例

  90、定理

  平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

  91、相似三角形判定定理1

  兩角對應相等,兩三角形相似(ASA)

  92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

  93、判定定理2

  兩邊對應成比例且夾角相等,兩三角形相似(SAS)

  94、判定定理3

  三邊對應成比例,兩三角形相似(SSS)

  95、定理

  如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似(HL)

  96、性質(zhì)定理1

  相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比

  97、性質(zhì)定理2

  相似三角形周長的比等于相似比

  98、性質(zhì)定理3

  相似三角形面積的比等于相似比的平方

  99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

  (a<90)

  100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

  101、圓是定點的距離等于定長的點的集合

  102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

  103、圓的外部可以看作是圓心的距離大于半徑的點的集合

  104、同圓或等圓的半徑相等

  105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

  107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

  108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

  109、定理

  不在同一直線上的三點確定一個圓。

  110、垂徑定理

  垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  111、推論1

 、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條。ㄖ睆剑

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  112、推論2

  圓的兩條平行弦所夾的弧相等

  113、圓是以圓心為對稱中心的中心對稱圖形

  114、定理

  在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115、推論

  在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  116、定理

  一條弧所對的圓周角等于它所對的圓心角的一半

  117、推論1

  同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  118、推論2

  半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119、推論3

  如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形

  120、定理

  圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角

  121、①直線L和⊙O相交

  0<=d<r

 、谥本L和⊙O相切

  d=r

 、壑本L和⊙O相離

  d>r

  122、切線的判定定理

  經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  123、切線的性質(zhì)定理

  圓的切線垂直于經(jīng)過切點的半徑

  124、推論1

  經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

  125、推論2

  經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  126、切線長定理

  從圓外一點引圓的兩條切線相交與一點,它們的切線長相等

  ,圓心和這一點的連線平分兩條切線的夾角

  127、圓的外切四邊形的兩組對邊的和相等

  128、弦切角定理

  弦切角等于它所夾的弧對的圓周角?

  129、推論

  如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等

  130、相交弦定理

  圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等

  131、推論

  如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項

  132、切割線定理

  從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項?

  133、推論

  從圓外一點引圓的兩條割線,這一點到每條

  割線與圓的交點的兩條線段長的積相等

  134、如果兩個圓相切,那么切點一定在連心線上

  135、①兩圓外離

  d>R+r

 、趦蓤A外切

  d=R+r

 、蹆蓤A相交

  R-r<d<R+r(R>r)

 、軆蓤A內(nèi)切

  d=R-r(R>r)

 、輧蓤A內(nèi)含

  d<R-r(R>r)

  136、定理

  相交兩圓的連心線垂直平分兩圓的公共弦

  137、定理

  把圓平均分成n(n≥3):

  ⑴依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

 、平(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  138、定理

  任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

  139、正n邊形的每個內(nèi)角都等于(n-2)×180°/n

  140、定理

  正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  141、正n邊形的面積Sn=pn*rn/2

  p表示正n邊形的周長

  142、正三角形面積√3a^2/4

  a表示邊長

  143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  144、弧長計算公式:L=n兀R/180——》L=nR

  145、扇形面積公式:S扇形=n兀R^2/360=LR/2

  146、內(nèi)公切線長=d-(R-r)

  外公切線長=d-(R+r)

  數(shù)學分析知識點總結(jié) 篇4

  1.數(shù)列的定義

  按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個數(shù)都叫做數(shù)列的項.

  (1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.

  (2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,….

  (4)數(shù)列的項與它的項數(shù)是不同的,數(shù)列的項是指這個數(shù)列中的某一個確定的數(shù),是一個函數(shù)值,也就是相當于f(n),而項數(shù)是指這個數(shù)在數(shù)列中的位置序號,它是自變量的值,相當于f(n)中的n.

  (5)次序?qū)τ跀?shù)列來講是十分重要的,有幾個相同的.數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個數(shù)按不同的次序排列時,就會得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.

  2.數(shù)列的分類

  (1)根據(jù)數(shù)列的項數(shù)多少可以對數(shù)列進行分類,分為有窮數(shù)列和無窮數(shù)列.在寫數(shù)列時,對于有窮數(shù)列,要把末項寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數(shù)列.

  (2)按照項與項之間的大小關(guān)系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動數(shù)列、常數(shù)列.

  3.數(shù)列的通項公式

  數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質(zhì)屬性是確定這一列數(shù)的規(guī)律,這個規(guī)律通常是用式子f(n)來表示的,

  這兩個通項公式形式上雖然不同,但表示同一個數(shù)列,正像每個函數(shù)關(guān)系不都能用解析式表達出來一樣,也不是每個數(shù)列都能寫出它的通項公式;有的數(shù)列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個數(shù)列前面的有限項,無其他說明,數(shù)列是不能確定的,通項公式更非.如:數(shù)列1,2,3,4。

  數(shù)學分析知識點總結(jié) 篇5

  時分秒

  1、鐘面上有3根針,它們是(時針)、(分針)、(秒針),其中走得快的是(秒針),走得慢的是(時針)。

  2、鐘面上有(12)個數(shù)字,(12)個大格,(60)個小格;每兩個數(shù)間是(1)個大格,也就是(5)個小格。

  3、時針走1大格是(1)小時;分針走1大格是(5)分鐘,走1小格是(1)分鐘;秒針走1大格是(5)秒鐘,走1小格是(1)秒鐘。

  4、時針走1大格,分針正好走(1)圈,分針走1圈是(60)分,也就是(1)小時。時針走1圈,分針要走(12)圈。

  5、分針走1小格,秒針正好走(1)圈,秒針走1圈是(60)秒,也就是(1)分鐘。

  6、時針從一個數(shù)走到下一個數(shù)是(1小時)。分針從一個數(shù)走到下一個數(shù)是(5分鐘)。秒針從一個數(shù)走到下一個數(shù)是(5秒鐘)。

  7、鐘面上時針和分針正好成直角的時間有:(3點整)、(9點整)。

  8、公式。(每兩個相鄰的時間單位之間的進率是60)

  1時=60分1分=60秒

  半時=30分60分=1時

  60秒=1分30分=半時

  測量

  1、在生活中,量比較短的物品,可以用(毫米、厘米、分米)做單位;量比較長的物體,常用(米)做單位;測量比較長的路程一般用(千米)做單位,千米也叫(公里)。

  2、1厘米的長度里有(10)小格,每小格的長度(相等),都是(1)毫米。

  3、1枚1分的硬幣、尺子、磁卡、小紐扣、鑰匙的厚度大約是1毫米。

  4、在計算長度時,只有相同的長度單位才能相加減。

  小技巧:換算長度單位時,把大單位換成小單位就在數(shù)字的末尾添加0(關(guān)系式中有幾個0,就添幾個0);把小單位換成大單位就在數(shù)字的末尾去掉0(關(guān)系式中有幾個0,就去掉幾個0)。

  5、長度單位的關(guān)系式有:(每兩個相鄰的長度單位之間的進率是10)

  ①進率是10:

  1米=10分米,1分米=10厘米,

  1厘米=10毫米,10分米=1米,

  10厘米=1分米,10毫米=1厘米,

 、谶M率是100:

  1米=100厘米,1分米=100毫米,

  100厘米=1米,100毫米=1分米

  ③進率是1000:

  1千米=1000米,1公里==1000米,

  1000米=1千米,1000米=1公里

  6、當我們表示物體有多重時,通常要用到(質(zhì)量單位)。在生活中,稱比較輕的物品的質(zhì)量,可以用(克)做單位;稱一般物品的質(zhì)量,常用(千克)做單位;計量較重的或大宗物品的質(zhì)量,通常用(噸)做單位。

  小技巧:在“噸”與“千克”的換算中,把噸換算成千克,是在數(shù)字的末尾加上3個0;

  把千克換算成噸,是在數(shù)字的末尾去掉3個0。

  7、相鄰兩個質(zhì)量單位進率是1000。

  1噸=1000千克1千克=1000克

  1000千克=1噸1000克=1千克

  倍的認識

  1、求一個數(shù)是另一個數(shù)的幾倍用除法:一個數(shù)÷另一個數(shù)=倍數(shù)

  2、求一個數(shù)的幾倍是多少用乘法:這個數(shù)×倍數(shù)=這個數(shù)的幾倍

  多位數(shù)乘一位數(shù)

  1、估算。(先求出多位數(shù)的近似數(shù),再進行計算。如497×7≈3500)

  2、①0和任何數(shù)相乘都得0;②1和任何不是0的數(shù)相乘還得原來的數(shù)。

  3、因數(shù)末尾有幾個0,就在積的末尾添上幾個0。

  4、三位數(shù)乘一位數(shù):積有可能是三位數(shù),也有可能是四位數(shù)。

  公式:速度×時間=路程

  每節(jié)車廂的人數(shù)×車廂的數(shù)量=全車的人數(shù)

  5、(關(guān)于“大約)應用題:

 、贄l件中出現(xiàn)“大約”,而問題中沒有“大約”,求準確數(shù)!(=)

  ②條件中沒有,而問題中出現(xiàn)“大約”。求近似數(shù),用估算!(≈)

 、蹢l件和問題中都有“大約”,求近似數(shù),用估算!(≈)

  四邊形

  1、有4條直的邊和4個角封閉圖形我們叫它四邊形。

  2、四邊形的特點:有四條直的邊,有四個角。

  3、長方形的特點:長方形有兩條長,兩條寬,四個直角,對邊相等。

  4、正方形的特點:有4個直角,4條邊相等。

  5、長方形和正方形是特殊的平行四邊形。

  6、平行四邊形的'特點:

 、賹呄嗟、對角相等。

 、谄叫兴倪呅稳菀鬃冃。(三角形不容易變形)

  7、封閉圖形一周的長度,就是它的周長。

  8、公式。

  正方形的周長=邊長×4

  正方形的邊長=周長÷4,

  長方形的周長=(長+寬)×2

  長方形的長=周長÷2-寬,

  長方形的寬=周長÷2-長

  分數(shù)的初步認識

  1、把一個物體或一個圖形平均分成幾份,取其中的幾份,就是這個物體或圖形的幾分之幾。

  2、把一個整體平均分得的份數(shù)越多,它的每一份所表示的數(shù)就越小。

  3、①分子相同,分母小的分數(shù)反而大,分母大的分數(shù)反而小。

 、诜帜赶嗤,分子大的分數(shù)就大,分子小的分數(shù)就小。

  4、①相同分母的分數(shù)相加、減:分母不變,只和分子相加、減。

  ②1與分數(shù)相減:1可以看作是與減數(shù)分母相同的,同分子分母的分數(shù)

【數(shù)學分析知識點總結(jié)】相關(guān)文章:

物理知識點總結(jié)06-05

兒科知識點總結(jié)05-24

動量知識點總結(jié)05-31

英語知識點總結(jié)12-02

馬說知識點總結(jié)05-29

師說知識點歸納總結(jié)10-25

物理浮力知識點總結(jié)03-30

大學概率知識點總結(jié)11-08

三年級數(shù)學分析怎么寫04-01

初中物理的知識點總結(jié)大全11-16