- 相關(guān)推薦
初中數(shù)學(xué)《相似多邊形及其性質(zhì)》教學(xué)教案
教學(xué)目標(biāo)
1.知識(shí)與技能
① 相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)角的比,對(duì)應(yīng)叫平分線(xiàn)的比和對(duì)應(yīng)中線(xiàn)的比和相似比的關(guān)系。
、 利用相似三角形的性質(zhì)解決一些實(shí)際問(wèn)題。
2.情感與態(tài)度
、傧嗨迫切沃袑(duì)應(yīng)線(xiàn)段的比和相似比的關(guān)系,培養(yǎng)學(xué)生的探索精神和合作意識(shí)。
、 通過(guò)運(yùn)用相似三角形的性質(zhì),增強(qiáng)學(xué)生的應(yīng)用意識(shí)
重點(diǎn)與難點(diǎn)
重點(diǎn):相似三角形中對(duì)應(yīng)線(xiàn)段比值的推倒,運(yùn)用相似三角形的性質(zhì)解決實(shí)際問(wèn)題。
難點(diǎn):相似三角形的性質(zhì)的運(yùn)用。
教學(xué)思考
通過(guò)例題的分析講解,讓學(xué)生感受相似三角形的性質(zhì)在實(shí)際生活中的應(yīng)用。
解決問(wèn)題
在理解并掌握相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)角平分線(xiàn)的比和對(duì)應(yīng)中線(xiàn)的比都等于相似比的過(guò)程中,培養(yǎng)學(xué)生利用相似三角形的性質(zhì)解決現(xiàn)實(shí)問(wèn)題的意識(shí)和應(yīng)用能力
教學(xué)方法
引導(dǎo)啟發(fā)式
課前準(zhǔn)備
幻燈片
教學(xué)設(shè)計(jì)
教師活動(dòng) 學(xué)生活動(dòng)
一、創(chuàng)設(shè)問(wèn)題情境,引入新課
帶領(lǐng)學(xué)生復(fù)習(xí)相似多邊形的性質(zhì)及相似三角形的性質(zhì),并提出疑問(wèn)“在兩個(gè)相似三角形中,是否只有對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例這個(gè)性質(zhì)?”從而引導(dǎo)學(xué)生探究相似三角形的其他性質(zhì)。
認(rèn)真聽(tīng)課、思考、回答老師提出的問(wèn)題 。
二、新課講解
1、 做一做
以實(shí)際問(wèn)題做引例,初步讓學(xué)生感知相似三角形對(duì)應(yīng)高的比和相似比的關(guān)系。
鉗工小王準(zhǔn)備按照比例尺為3∶4的圖紙制作三角形零件,圖紙上的△ABC表示該零件的橫斷面△ABC,CD和CD分別是它們的高.
。1) , , 各等于多少?
。2)△ABC與△ABC相似嗎?如果相似,請(qǐng)說(shuō)明理由,并指出它們的相似比.
。3)請(qǐng)你在圖4-38中再找出一對(duì)相似三角形.
(4) 等于多少?你是怎么做的?與同伴交流.
閱讀課本材料,弄清題意,根據(jù)已有的經(jīng)驗(yàn)積極思考,動(dòng)手操作畫(huà)圖,在練習(xí)本上作答。
依次回答課本提出的4個(gè)問(wèn)題并加以思考
2、議一議
根據(jù)上面的引例讓學(xué)生猜測(cè),證明相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)角平分線(xiàn)的比和對(duì)應(yīng)中線(xiàn)的比都等于相似比。
已知△ABC∽△ABC,△ABC與△ABC的相似比為k.
(1)如果CD和CD是它們的對(duì)應(yīng)高,那么 等于多少?
(2)如果CD和CD是它們的對(duì)應(yīng)角平分線(xiàn),那么 等于多少?如果CD和CD是它們的對(duì)應(yīng)中線(xiàn)呢?
學(xué)生經(jīng)歷觀察,推證、討論,交流后,獨(dú)立回答。
3、教師歸納
總結(jié)相似三角形的性質(zhì):
相似三角形對(duì)應(yīng)高的比、對(duì)應(yīng)角平分線(xiàn)的比和對(duì)應(yīng)中線(xiàn)的比都等于相似比。
學(xué)生理解、熟記。
歸納、類(lèi)比加深對(duì)相似性質(zhì)的理解
三、課堂練習(xí):
例題講解,利用相似三角形的性質(zhì)解決一些問(wèn)題。
如圖所示,在等腰三角形ABC中,底邊BC=60 cm,高AD=40 cm,四邊形PQRS是正方形.
(1) △ASR與△ABC相似嗎?為什么?
。2) 求正方形PQRS的邊長(zhǎng).
閱讀例題材料,弄懂題意,然后運(yùn)用所學(xué)知識(shí)作答。寫(xiě)出解題過(guò)程.
四、探索活動(dòng):
如圖,AD,AD分別是△ABC和△ABC的角平分線(xiàn),且AB:AB=BD:BD=AD:AD,你認(rèn)為△ABC∽△ABC嗎?
針對(duì)此題,學(xué)生先獨(dú)立思考,然后展開(kāi)小組討論,充分交流后作答。
五、課時(shí)小結(jié)
指導(dǎo)學(xué)生結(jié)合本節(jié)課的知識(shí)點(diǎn),對(duì)學(xué)習(xí)過(guò)程進(jìn)行總結(jié)。
本節(jié)課主要根據(jù)相似三角形的性質(zhì)和判定判定推導(dǎo)了相似三角形的性質(zhì)、相似三角形的對(duì)應(yīng)高的比、對(duì)應(yīng)角平分線(xiàn)的比和對(duì)應(yīng)中線(xiàn)的比都等于相似比。
學(xué)生暢所欲言,談學(xué)習(xí)的體會(huì),遇到的困難以及獲得的啟發(fā)。
六、布置課后作業(yè):
課后習(xí)題節(jié)選
獨(dú)立完成作業(yè)。
板書(shū)設(shè)計(jì)
29.6相似多邊形及其性質(zhì)
一、1.做一做
2.議一議
3.例題講解
二、課堂練習(xí)
三、課時(shí)小節(jié)
四、課后作業(yè)
【初中數(shù)學(xué)《相似多邊形及其性質(zhì)》教學(xué)教案】相關(guān)文章:
多邊形的面積的教學(xué)教案10-09
相似三角形的判定數(shù)學(xué)教學(xué)教案01-17
初中數(shù)學(xué)《平行線(xiàn)的性質(zhì)》教案(通用11篇)07-18
數(shù)學(xué)小數(shù)的意義和性質(zhì)教案11-29
2023初中數(shù)學(xué)教學(xué)教案02-14
相似三角形的判定數(shù)學(xué)教學(xué)教案5篇01-17