亚洲色影视在线播放_国产一区+欧美+综合_久久精品少妇视频_制服丝袜国产网站

教案

函數(shù)教學(xué)教案設(shè)計(jì)

時(shí)間:2025-01-21 17:50:29 澤彪 教案 我要投稿
  • 相關(guān)推薦

函數(shù)教學(xué)教案設(shè)計(jì)(通用19篇)

  作為一位優(yōu)秀的人民教師,時(shí)常需要編寫(xiě)教案,編寫(xiě)教案有利于我們科學(xué)、合理地支配課堂時(shí)間。那么什么樣的教案才是好的呢?下面是小編精心整理的函數(shù)教學(xué)教案設(shè)計(jì),供大家參考借鑒,希望可以幫助到有需要的朋友。

函數(shù)教學(xué)教案設(shè)計(jì)(通用19篇)

  函數(shù)教學(xué)教案設(shè)計(jì) 1

  教學(xué)目標(biāo):

  1.進(jìn)一步理解指數(shù)函數(shù)的性質(zhì);

  2.能較熟練地運(yùn)用指數(shù)函數(shù)的性質(zhì)解決指數(shù)函數(shù)的平移問(wèn)題;

  教學(xué)重點(diǎn):

  指數(shù)函數(shù)的性質(zhì)的應(yīng)用;

  教學(xué)難點(diǎn):

  指數(shù)函數(shù)圖象的平移變換.

  教學(xué)過(guò)程:

  一、情境創(chuàng)設(shè)

  1.復(fù)習(xí)指數(shù)函數(shù)的概念、圖象和性質(zhì)

  練習(xí):函數(shù)=ax(a>0且a≠1)的定義域是_____,值域是______,函數(shù)圖象所過(guò)的定點(diǎn)坐標(biāo)為.若a>1,則當(dāng)x>0時(shí), 1;而當(dāng)x<0時(shí), 1.若0<a<1,則當(dāng)x>0時(shí), 1;而當(dāng)x<0時(shí), 1.

  2.情境問(wèn)題:指數(shù)函數(shù)的性質(zhì)除了比較大小,還有什么作用呢?我們知道對(duì)任意的a>0且a≠1,函數(shù)=ax的圖象恒過(guò)(0,1),那么對(duì)任意的a>0且a≠1,函數(shù)=a2x1的圖象恒過(guò)哪一個(gè)定點(diǎn)呢?

  二、數(shù)學(xué)應(yīng)用與建構(gòu)

  例1 解不等式:

 。1) ;(2) ;

  (3) ;(4).

  小結(jié):解關(guān)于指數(shù)的不等式與判斷幾個(gè)指數(shù)值的大小一樣,是指數(shù)性質(zhì)的運(yùn)用,關(guān)鍵是底數(shù)所在的范圍.

  例2 說(shuō)明下列函數(shù)的圖象與指數(shù)函數(shù)=2x的圖象的關(guān)系,并畫(huà)出它們的示意圖:

 。1) ; (2) ;(3) ;(4).

  小結(jié):指數(shù)函數(shù)的平移規(guī)律:=f(x)左右平移 =f(x+)(當(dāng)>0時(shí),向左平移,反之向右平移),上下平移 =f(x)+h(當(dāng)h>0時(shí),向上平移,反之向下平移).

  練習(xí):

 。1)將函數(shù)f (x)=3x的圖象向右平移3個(gè)單位,再向下平移2個(gè)單位,可以得到函數(shù) 的圖象.

  (2)將函數(shù)f (x)=3x的圖象向右平移2個(gè)單位,再向上平移3個(gè)單位,可以得到函數(shù) 的圖象.

 。3)將函數(shù) 圖象先向左平移2個(gè)單位,再向下平移1個(gè)單位所得函數(shù)的解析式是.

 。4)對(duì)任意的.a>0且a≠1,函數(shù)=a2x1的圖象恒過(guò)的定點(diǎn)的坐標(biāo)是.函數(shù)=a2x-1的圖象恒過(guò)的定點(diǎn)的坐標(biāo)是.

  小結(jié):指數(shù)函數(shù)的定點(diǎn)往往是解決問(wèn)題的突破口!定點(diǎn)與單調(diào)性相結(jié)合,就可以構(gòu)造出函數(shù)的簡(jiǎn)圖,從而許多問(wèn)題就可以找到解決的突破口.

  (5)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)=2x和=2|x2|的圖象?

  (6)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)=|2x-1|的圖象?

  小結(jié):函數(shù)圖象的對(duì)稱變換規(guī)律.

  例3 已知函數(shù)=f(x)是定義在R上的奇函數(shù),且x<0時(shí),f(x)=1-2x,試畫(huà)出此函數(shù)的圖象.

  例4 求函數(shù) 的最小值以及取得最小值時(shí)的x值.

  小結(jié):復(fù)合函數(shù)常常需要換元來(lái)求解其最值.

  練習(xí):

 。1)函數(shù)=ax在[0,1]上的最大值與最小值的和為3,則a等于 ;

  (2)函數(shù)=2x的值域?yàn)?;

 。3)設(shè)a>0且a≠1,如果=a2x+2ax-1在[-1,1]上的最大值為14,求a的值;

  (4)當(dāng)x>0時(shí),函數(shù)f(x)=(a2-1)x的值總大于1,求實(shí)數(shù)a的取值范圍.

  三、小結(jié)

  1.指數(shù)函數(shù)的性質(zhì)及應(yīng)用;

  2.指數(shù)型函數(shù)的定點(diǎn)問(wèn)題;

  3.指數(shù)型函數(shù)的草圖及其變換規(guī)律.

  四、作業(yè):

  課本P71-11,12,15題.

  五、課后探究

 。1)函數(shù)f(x)的定義域?yàn)?0,1),則函數(shù) 的定義域?yàn)?

  (2)對(duì)于任意的x1,x2R ,若函數(shù)f(x)=2x ,試比較 的大小.

  函數(shù)教學(xué)教案設(shè)計(jì) 2

  教學(xué)目標(biāo)

  1.使學(xué)生了解反函數(shù)的概念;

  2.使學(xué)生會(huì)求一些簡(jiǎn)單函數(shù)的反函數(shù);

  3.培養(yǎng)學(xué)生用辯證的觀點(diǎn)觀察、分析解決問(wèn)題的能力。

  教學(xué)重點(diǎn)

  1.反函數(shù)的概念;

  2.反函數(shù)的求法。

  教學(xué)難點(diǎn)

  反函數(shù)的概念。

  教學(xué)方法

  師生共同討論

  教具裝備

  幻燈片2張

  第一張:反函數(shù)的定義、記法、習(xí)慣記法。(記作A);

  第二張:本課時(shí)作業(yè)中的預(yù)習(xí)內(nèi)容及提綱。

  教學(xué)過(guò)程

 。↖)講授新課

 。z查預(yù)習(xí)情況)

  師:這節(jié)課我們來(lái)學(xué)習(xí)反函數(shù)(板書(shū)課題)§2.4.1 反函數(shù)的概念。

  同學(xué)們已經(jīng)進(jìn)行了預(yù)習(xí),對(duì)反函數(shù)的概念有了初步的了解,誰(shuí)來(lái)復(fù)述一下反函數(shù)的定義、記法、習(xí)慣記法?

  生:(略)

 。▽W(xué)生回答之后,打出幻燈片A)。

  師:反函數(shù)的定義著重強(qiáng)調(diào)兩點(diǎn):

 。1)根據(jù)y= f(x)中x與y的關(guān)系,用y把x表示出來(lái),得到x=φ(y);

 。2)對(duì)于y在c中的任一個(gè)值,通過(guò)x=φ(y),x在A中都有惟一的值和它對(duì)應(yīng)。

  師:應(yīng)該注意習(xí)慣記法是由記法改寫(xiě)過(guò)來(lái)的。

  師:由反函數(shù)的定義,同學(xué)們考慮一下,怎樣的映射確定的函數(shù)才有反函數(shù)呢?

  生:一一映射確定的函數(shù)才有反函數(shù)。

 。▽W(xué)生作答后,教師板書(shū),若學(xué)生答不來(lái),教師再予以必要的`啟示)。

  師:在y= f(x)中與y= f -1(y)中的x、y,所表示的量相同。(前者中的x與后者中的x都屬于同一個(gè)集合,y也是如此),但地位不同(前者x是自變量,y是函數(shù)值;后者y是自變量,x是函數(shù)值。)

  在y= f(x)中與y= f –1(x)中的x都是自變量,y都是函數(shù)值,即x、y在兩式中所處的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y是后者中的x。)

  由此,請(qǐng)同學(xué)們談一下,函數(shù)y= f(x)與它的反函數(shù)y= f –1(x)兩者之間,定義域、值域存在什么關(guān)系呢?

  生:(學(xué)生作答,教師板書(shū))函數(shù)的定義域,值域分別是它的反函數(shù)的值域、定義域。

  師:從反函數(shù)的概念可知:函數(shù)y= f (x)與y= f –1(x)互為反函數(shù)。

  從反函數(shù)的概念我們還可以知道,求函數(shù)的反函數(shù)的方法步驟為:

  (1)由y= f (x)解出x= f –1(y),即把x用y表示出;

  (2)將x= f –1(y)改寫(xiě)成y= f –1(x),即對(duì)調(diào)x= f –1(y)中的x、y。

 。3)指出反函數(shù)的定義域。

  下面請(qǐng)同學(xué)自看例1

 。↖I)課堂練習(xí) 課本P68練習(xí)1、2、3、4。

 。↖II)課時(shí)小結(jié)

  本節(jié)課我們學(xué)習(xí)了反函數(shù)的概念,從中知道了怎樣的映射確定的函數(shù)才有反函數(shù)并求函數(shù)的反函數(shù)的方法步驟,大家要熟練掌握。

 。↖V)課后作業(yè)

  一、課本P69習(xí)題2.4 1、2。

  二、預(yù)習(xí):互為反函數(shù)的函數(shù)圖象間的關(guān)系,親自動(dòng)手作題中要求作的圖象。

  板書(shū)設(shè)計(jì)

  課題: 求反函數(shù)的方法步驟:

  定義:(幻燈片)

  注意: 小結(jié)

  一一映射確定的

  函數(shù)才有反函數(shù)

  函數(shù)與它的反函

  數(shù)定義域、值域的關(guān)系。

  函數(shù)教學(xué)教案設(shè)計(jì) 3

  教學(xué)目標(biāo):

  (一)教學(xué)知識(shí)點(diǎn):

  1.對(duì)數(shù)函數(shù)的概念;2.對(duì)數(shù)函數(shù)的圖象和性質(zhì).

  (二)能力訓(xùn)練要求:

  1.理解對(duì)數(shù)函數(shù)的概念;2.掌握對(duì)數(shù)函數(shù)的圖象和性質(zhì).

  (三)德育滲透目標(biāo):

  1.用聯(lián)系的觀點(diǎn)分析問(wèn)題;2.認(rèn)識(shí)事物之間的互相轉(zhuǎn)化.

  教學(xué)重點(diǎn):

  對(duì)數(shù)函數(shù)的圖象和性質(zhì)

  教學(xué)難點(diǎn):

  對(duì)數(shù)函數(shù)與指數(shù)函數(shù)的關(guān)系

  教學(xué)方法:

  聯(lián)想、類比、發(fā)現(xiàn)、探索

  教學(xué)輔助:

  多媒體

  教學(xué)過(guò)程:

  一、引入對(duì)數(shù)函數(shù)的概念

  由學(xué)生的預(yù)習(xí),可以直接回答“對(duì)數(shù)函數(shù)的概念”

  由指數(shù)、對(duì)數(shù)的定義及指數(shù)函數(shù)的概念,我們進(jìn)行類比,可否猜想有:

  問(wèn)題:

  1.指數(shù)函數(shù)是否存在反函數(shù)?

  2.求指數(shù)函數(shù)的反函數(shù).

  3.結(jié)論

  所以函數(shù)與指數(shù)函數(shù)互為反函數(shù).

  這節(jié)課我們所要研究的便是指數(shù)函數(shù)的反函數(shù)——對(duì)數(shù)函數(shù).

  二、講授新課

  1.對(duì)數(shù)函數(shù)的定義:

  定義域:(0,+∞);值域:(-∞,+∞)

  2.對(duì)數(shù)函數(shù)的圖象和性質(zhì):

  因?yàn)閷?duì)數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù).所以與圖象關(guān)于直線對(duì)稱.

  因此,我們只要畫(huà)出和圖象關(guān)于直線對(duì)稱的曲線,就可以得到的圖象.

  研究指數(shù)函數(shù)時(shí),我們分別研究了底數(shù)和兩種情形.

  那么我們可以畫(huà)出與圖象關(guān)于直線對(duì)稱的曲線得到的圖象.

  還可以畫(huà)出與圖象關(guān)于直線對(duì)稱的曲線得到的圖象.

  請(qǐng)同學(xué)們作出與的草圖,并觀察它們具有一些什么特征?

  對(duì)數(shù)函數(shù)的`圖象與性質(zhì):

  (1)定義域:

 。2)值域:

 。3)過(guò)定點(diǎn),即當(dāng)時(shí),

  (4)上的增函數(shù)

 。4)上的減函數(shù)

  3.練習(xí):

  (1)比較下列各組數(shù)中兩個(gè)值的大小:

  (2)解關(guān)于x的不等式:

  思考:(1)比較大。

  (2)解關(guān)于x的不等式:

  三、小結(jié)

  這節(jié)課我們主要介紹了指數(shù)函數(shù)的反函數(shù)——對(duì)數(shù)函數(shù).并且研究了對(duì)數(shù)函數(shù)的圖象和性質(zhì).

  四、課后作業(yè)

  課本P85,習(xí)題2.8,1、3

  函數(shù)教學(xué)教案設(shè)計(jì) 4

  【學(xué)習(xí)目標(biāo)】

  1、從單位圓和圖像兩個(gè)角度研究正弦函數(shù)的變化規(guī)律,學(xué)習(xí)從不同角度觀察、研究問(wèn)題;

  2、體會(huì)正弦函數(shù)的周期性在畫(huà)y=sinx圖像過(guò)程中的應(yīng)用;

  3、理解利用單位圓畫(huà)正弦函數(shù)的圖像,會(huì)用五點(diǎn)法畫(huà)函數(shù)y = sinx,x∈[0,2π]的圖象。

  【學(xué)習(xí)重點(diǎn)】

  用五點(diǎn)法繪制正弦函數(shù)圖象

  【學(xué)習(xí)難點(diǎn)】

  利用單位圓畫(huà)正弦函數(shù)圖像

  【思想方法】

  能從圖形觀察、分析得出結(jié)論,體會(huì)數(shù)形結(jié)合的思想方法

  【知識(shí)鏈接】

  1、 三角函數(shù)在單位圓中的定義

  2、 正余弦函數(shù)的周期性

  【學(xué)習(xí)過(guò)程】

  一、預(yù)習(xí)自學(xué)(把握基礎(chǔ))

  閱讀課本第25~28頁(yè)“練習(xí)”以上部分的內(nèi)容,緊抓五點(diǎn)法作圖的規(guī)律

  1、復(fù)習(xí):正弦函數(shù)是一個(gè)周期函數(shù),最小正周期是____,所以,關(guān)鍵就在于畫(huà)出________上的正弦函數(shù)的圖像。

  2、預(yù)習(xí):

  (1)正弦函數(shù) 409【導(dǎo)學(xué)案】5.1正弦函數(shù)的圖像, 409【導(dǎo)學(xué)案】5.1正弦函數(shù)的圖像的圖像叫做正弦曲線。

 。2)五點(diǎn)作圖法:

  在精確度要求不太高時(shí),我們常常先找出這五個(gè)關(guān)鍵點(diǎn),然后用光滑曲線將它們連接起來(lái),就得到這個(gè)函數(shù)的簡(jiǎn)圖。我們稱這種畫(huà)正弦曲線的方法為“五點(diǎn)法”,這五個(gè)關(guān)鍵點(diǎn)是:_________________________ ,描出這五個(gè)點(diǎn)后,函數(shù)y=sinx,x[0,2p]的圖像的`形狀就基本上確定了。

  【導(dǎo)學(xué)案】5.1正弦函數(shù)的圖像

  二、合作探究(鞏固深化,發(fā)展思維)

  例1.用“五點(diǎn)法”畫(huà)出下列函數(shù)在區(qū)間[0,2π]上的簡(jiǎn)圖。

 。1)y=-sinx (2)y=1+sinx

  例2.用五點(diǎn)法作出函數(shù)y=3sinx, [0,2π]的圖像。

  三、學(xué)習(xí)體會(huì)

  1、知識(shí)方法:

  2、我的疑惑:

  四、達(dá)標(biāo)檢測(cè)(相信自我,收獲成功)

  1、y=1+sinx,[0,2π]的圖像與直線y= 409【導(dǎo)學(xué)案】5.1正弦函數(shù)的圖像 的交點(diǎn)個(gè)數(shù)為

  2、畫(huà)出函數(shù)y=2+sinx x∈[0,2π]的圖象。

  3、畫(huà)出函數(shù)y=sinx-1 x∈[0,2π]的圖象。

  函數(shù)教學(xué)教案設(shè)計(jì) 5

  一、說(shuō)課內(nèi)容:

  蘇教版九年級(jí)數(shù)學(xué)下冊(cè)第六章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題

  二、教材分析:

  1、教材的地位和作用

  這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來(lái)學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個(gè)具體的函數(shù),也是最重要的,在歷年來(lái)的中考題中占有較大比例。同時(shí),二次函數(shù)和以前學(xué)過(guò)的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解“數(shù)形結(jié)合”的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來(lái)學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個(gè)教材中具有承上啟下的重要作用。

  2、教學(xué)目標(biāo)和要求:

  (1)知識(shí)與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實(shí)際問(wèn)題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實(shí)際問(wèn)題確定自變量的取值范圍。

  (2)過(guò)程與方法:復(fù)習(xí)舊知,通過(guò)實(shí)際問(wèn)題的引入,經(jīng)歷二次函數(shù)概念的探索過(guò)程,提高學(xué)生解決問(wèn)題的能力.

  (3)情感、態(tài)度與價(jià)值觀:通過(guò)觀察、操作、交流歸納等數(shù)學(xué)活動(dòng)加深對(duì)二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心.

  3、教學(xué)重點(diǎn):對(duì)二次函數(shù)概念的理解。

  4、教學(xué)難點(diǎn):由實(shí)際問(wèn)題確定函數(shù)解析式和確定自變量的取值范圍。

  三、教法學(xué)法設(shè)計(jì):

  1、從創(chuàng)設(shè)情境入手,通過(guò)知識(shí)再現(xiàn),孕伏教學(xué)過(guò)程

  2、從學(xué)生活動(dòng)出發(fā),通過(guò)以舊引新,順勢(shì)教學(xué)過(guò)程

  3、利用探索、研究手段,通過(guò)思維深入,領(lǐng)悟教學(xué)過(guò)程

  四、教學(xué)過(guò)程:

  (一)復(fù)習(xí)提問(wèn)

  1.什么叫函數(shù)?我們之前學(xué)過(guò)了那些函數(shù)?

  (一次函數(shù),正比例函數(shù),反比例函數(shù))

  2.它們的形式是怎樣的?

  (y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)

  3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k≠0的條件? k值對(duì)函數(shù)性質(zhì)有什么影響?

  【設(shè)計(jì)意圖】復(fù)習(xí)這些問(wèn)題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對(duì)函數(shù)定義的理解.強(qiáng)調(diào)k≠0的條件,以備與二次函數(shù)中的a進(jìn)行比較.

  (二)引入新課

  函數(shù)是研究?jī)蓚(gè)變量在某變化過(guò)程中的相互關(guān)系,我們已學(xué)過(guò)正比例函數(shù),反比例函數(shù)和一次函數(shù)?聪旅嫒齻(gè)例子中兩個(gè)變量之間存在怎樣的關(guān)系。(電腦演示)

  例1、(1)圓的半徑是r(cm)時(shí),面積s (cm)與半徑之間的關(guān)系是什么?

  解:s=πr(r>0)

  例2、用周長(zhǎng)為20m的籬笆圍成矩形場(chǎng)地,場(chǎng)地面積y(m)與矩形一邊長(zhǎng)x(m)之間的關(guān)系是什么?

  解: y=x(20/2-x)=x(10-x)=-x+10x (0

  例3、設(shè)人民幣一年定期儲(chǔ)蓄的年利率是x,一年到期后,銀行將本金和利息自動(dòng)按一年定期儲(chǔ)蓄轉(zhuǎn)存。如果存款額是100元,那么請(qǐng)問(wèn)兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?

  解: y=100(1+x)

  =100(x+2x+1)

  = 100x+200x+100(0

  教師提問(wèn):以上三個(gè)例子所列出的.函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?

  【設(shè)計(jì)意圖】通過(guò)具體事例,讓學(xué)生列出關(guān)系式,啟發(fā)學(xué)生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系: (1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。

  (三)講解新課

  以上函數(shù)不同于我們所學(xué)過(guò)的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。

  二次函數(shù)的定義:形如y=ax2+bx+c (a≠0,a, b, c為常數(shù)) 的函數(shù)叫做二次函數(shù)。

  鞏固對(duì)二次函數(shù)概念的理解:

  1、強(qiáng)調(diào)“形如”,即由形來(lái)定義函數(shù)名稱。二次函數(shù)即y 是關(guān)于x的二次多項(xiàng)式(關(guān)于的x代數(shù)式一定要是整式)。

  2、在 y=ax2+bx+c 中自變量是x ,它的取值范圍是一切實(shí)數(shù)。但在實(shí)際問(wèn)題中,自變量的取值范圍是使實(shí)際問(wèn)題有意義的值。(如例1中要求r>0)

  3、為什么二次函數(shù)定義中要求a≠0 ?

  (若a=0,ax2+bx+c就不是關(guān)于x的二次多項(xiàng)式了)

  4、在例3中,二次函數(shù)y=100x2+200x+100中, a=100, b=200, c=100.

  5、b和c是否可以為零?

  由例1可知,b和c均可為零.

  若b=0,則y=ax2+c;

  若c=0,則y=ax2+bx;

  若b=c=0,則y=ax2.

  注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.

  【設(shè)計(jì)意圖】這里強(qiáng)調(diào)對(duì)二次函數(shù)概念的理解,有助于學(xué)生更好地理解,掌握其特征,為接下來(lái)的判斷二次函數(shù)做好鋪墊。

  判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.

  (1)y=3(x-1)+1 (2)

  (3)s=3-2t (4)y=(x+3)- x

  (5) s=10πr (6) y=2+2x

  (8)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))

  【設(shè)計(jì)意圖】理論學(xué)習(xí)完二次函數(shù)的概念后,讓學(xué)生在實(shí)踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識(shí)應(yīng)用到實(shí)踐操作中。

  (四)鞏固練習(xí)

  1.已知一個(gè)直角三角形的兩條直角邊長(zhǎng)的和是10cm。

  (1)當(dāng)它的一條直角邊的長(zhǎng)為4.5cm時(shí),求這個(gè)直角三角形的面積;

  (2)設(shè)這個(gè)直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關(guān)

  于x的函數(shù)關(guān)系式。

  【設(shè)計(jì)意圖】此題由具體數(shù)據(jù)逐步過(guò)渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過(guò)程,從而降低學(xué)生學(xué)習(xí)的難度。

  2.已知正方體的棱長(zhǎng)為xcm,它的表面積為Scm2,體積為Vcm3。

  (1)分別寫(xiě)出S與x,V與x之間的函數(shù)關(guān)系式子;

  (2)這兩個(gè)函數(shù)中,那個(gè)是x的二次函數(shù)?

  【設(shè)計(jì)意圖】簡(jiǎn)單的實(shí)際問(wèn)題,學(xué)生會(huì)很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個(gè)是二次函數(shù)。通過(guò)簡(jiǎn)單題目的練習(xí),讓學(xué)生體驗(yàn)到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。

  3.設(shè)圓柱的高為h(cm)是常量,底面半徑為rcm,底面周長(zhǎng)為Ccm,圓柱的體積為Vcm3

  (1)分別寫(xiě)出C關(guān)于r;V關(guān)于r的函數(shù)關(guān)系式;

  (2)兩個(gè)函數(shù)中,都是二次函數(shù)嗎?

  【設(shè)計(jì)意圖】此題要求學(xué)生熟記圓柱體積和底面周長(zhǎng)公式,在這兒相當(dāng)于做了一次復(fù)習(xí),并與今天所學(xué)知識(shí)聯(lián)系起來(lái)。

  4. 籬笆墻長(zhǎng)30m,靠墻圍成一個(gè)矩形花壇,寫(xiě)出花壇面積y(m2)與長(zhǎng)x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.

  【設(shè)計(jì)意圖】此題較前面幾題稍微復(fù)雜些,旨在讓學(xué)生能夠開(kāi)動(dòng)腦筋,積極思考,讓學(xué)生能夠“跳一跳,夠得到”。

  (五)拓展延伸

  1. 已知二次函數(shù)y=ax2+bx+c,當(dāng) x=0時(shí),y=0;x=1時(shí),y=2;x= -1時(shí),y=1.求a、b、c,并寫(xiě)出函數(shù)解析式.

  【設(shè)計(jì)意圖】在此稍微滲透簡(jiǎn)單的用待定系數(shù)法求二次函數(shù)解析式的問(wèn)題,為下節(jié)課的教學(xué)做個(gè)鋪墊。

  2.確定下列函數(shù)中k的值

  (1)如果函數(shù)y= xk^2-3k+2 +kx+1是二次函數(shù),則k的值一定是______

  (2)如果函數(shù)y=(k-3)xk^2-3k+2+kx+1是二次函數(shù),則k的值一定是______

  【設(shè)計(jì)意圖】此題著重復(fù)習(xí)二次函數(shù)的特征:自變量的最高次數(shù)為2次,且二次項(xiàng)系數(shù)不為0.

  (六) 小結(jié)思考:

  本節(jié)課你有哪些收獲?還有什么不清楚的地方?

  【設(shè)計(jì)意圖】讓學(xué)生來(lái)談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識(shí)進(jìn)行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補(bǔ)充。

  (七) 作業(yè)布置:

  必做題:

  1. 正方形的邊長(zhǎng)為4,如果邊長(zhǎng)增加x,則面積增加y,求y關(guān)于x 的函數(shù)關(guān)系式。這個(gè)函數(shù)是二次函數(shù)嗎?

  2. 在長(zhǎng)20cm,寬15cm的矩形木板的四角上各鋸掉一個(gè)邊長(zhǎng)為xcm的正方形,寫(xiě)出余下木板的面積y(cm2)與正方形邊長(zhǎng)x(cm)之間的函數(shù)關(guān)系,并注明自變量的取值范圍。

  選做題:

  1.已知函數(shù) 是二次函數(shù),求m的值。

  2.試在平面直角坐標(biāo)系畫(huà)出二次函數(shù)y=x2和y=-x2圖象

  【設(shè)計(jì)意圖】作業(yè)中分為必做題與選做題,實(shí)施分層教學(xué),體現(xiàn)新課標(biāo)人人學(xué)有價(jià)值的數(shù)學(xué),不同的人得到不同的發(fā)展。另外補(bǔ)充第4題,旨在激發(fā)學(xué)生繼續(xù)學(xué)習(xí)二次函數(shù)圖象的興趣。

  五、教學(xué)設(shè)計(jì)思考

  以實(shí)現(xiàn)教學(xué)目標(biāo)為前提

  以現(xiàn)代教育理論為依據(jù)

  以現(xiàn)代信息技術(shù)為手段

  貫穿一個(gè)原則——以學(xué)生為主體的原則

  突出一個(gè)特色——充分鼓勵(lì)表?yè)P(yáng)的特色

  滲透一個(gè)意識(shí)——應(yīng)用數(shù)學(xué)的意識(shí)

  函數(shù)教學(xué)教案設(shè)計(jì) 6

  教學(xué)目標(biāo):

  1、掌握一次函數(shù)解析式的特點(diǎn)及意義

  2、知道一次函數(shù)與正比例函數(shù)的關(guān)系

  3、理解一次函數(shù)圖象特點(diǎn)與解析式的聯(lián)系規(guī)律

  教學(xué)重點(diǎn):

  1、 一次函數(shù)解析式特點(diǎn)

  2、 一次函數(shù)圖象特征與解析式的聯(lián)系規(guī)律

  教學(xué)難點(diǎn):

  1、一次函數(shù)與正比例函數(shù)關(guān)系

  2、根據(jù)已知信息寫(xiě)出一次函數(shù)的表達(dá)式。

  教學(xué)過(guò)程:

 、.提出問(wèn)題,創(chuàng)設(shè)情境

  問(wèn)題1 小明暑假第一次去北京.汽車(chē)駛上A地的高速公路后,小明觀察里程碑,發(fā)現(xiàn)汽車(chē)的平均車(chē)速是95千米/小時(shí).已知A地直達(dá)北京的高速公路全程為570千米,小明想知道汽車(chē)從A地駛出后,距北京的路程和汽車(chē)在高速公路上行駛的時(shí)間有什么關(guān)系,以便根據(jù)時(shí)間估計(jì)自己和北京的距離.

  分析 我們知道汽車(chē)距北京的路程隨著行車(chē)時(shí)間而變化,要想找出這兩個(gè)變化著的量的關(guān)系,并據(jù)此得出相應(yīng)的值,顯然,應(yīng)該探求這兩個(gè)變量的變化規(guī)律.為此,我們?cè)O(shè)汽車(chē)在高速公路上行駛時(shí)間為t小時(shí),汽車(chē)距北京的路程為s千米,根據(jù)題意,s和t的函數(shù)關(guān)系式是

  s=570-95t.

  說(shuō)明 找出問(wèn)題中的變量并用字母表示是探求函數(shù)關(guān)系的第一步,這里的s、t是兩個(gè)變量,s是t的函數(shù),t是自變量,s是因變量.

  問(wèn)題2 小張準(zhǔn)備將平時(shí)的零用錢(qián)節(jié)約一些儲(chǔ)存起來(lái).他已存有50元,從現(xiàn)在起每個(gè)月節(jié)存12元.試寫(xiě)出小張的存款與從現(xiàn)在開(kāi)始的月份之間的函數(shù)關(guān)系式.

  分析 我們?cè)O(shè)從現(xiàn)在開(kāi)始的月份數(shù)為x,小張的存款數(shù)為y元,得到所求的函數(shù)關(guān)系式為:y=50+12x.

  問(wèn)題3 以上問(wèn)題1和問(wèn)題2表示的這兩個(gè)函數(shù)有什么共同點(diǎn)?

 、.導(dǎo)入新課

  上面的兩個(gè)函數(shù)關(guān)系式都是左邊是因變量y,右邊是含自變量x的代數(shù)式。并且自變量和因變量的指數(shù)都是一次。若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱

  y是x的正比例函數(shù)。

  例1:下列函數(shù)中,y是x的一次函數(shù)的是( )

 、賧=x-6;②y=2x;③y=;④y=7-x x8

  A、①②③B、①③④ C、①②③④ D、②③④

  例2 下列函數(shù)關(guān)系中,哪些屬于一次函數(shù),其中哪些又屬于正比例函數(shù)?

 。1)面積為10cm2的三角形的底a(cm)與這邊上的高h(yuǎn)(cm);

 。2)長(zhǎng)為8(cm)的平行四邊形的周長(zhǎng)L(cm)與寬b(cm);

 。3)食堂原有煤120噸,每天要用去5噸,x天后還剩下煤y噸;

 。4)汽車(chē)每小時(shí)行40千米,行駛的路程s(千米)和時(shí)間t(小時(shí)).

 。5)汽車(chē)以60千米/時(shí)的速度勻速行駛,行駛路程中y(千米)與行駛時(shí)間x(時(shí))之間的關(guān)系式;

 。6)圓的面積y(厘米2)與它的半徑x(厘米)之間的關(guān)系;

  (7)一棵樹(shù)現(xiàn)在高50厘米,每個(gè)月長(zhǎng)高2厘米,x月后這棵樹(shù)的高度為y(厘米) 分析 確定函數(shù)是否為一次函數(shù)或正比例函數(shù),就是看它們的解析式經(jīng)過(guò)整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此題必須先寫(xiě)出函數(shù)解析式后解答. 解

 。1)a=20,不是一次函數(shù). h

 。2)L=2b+16,L是b的一次函數(shù).

  (3)y=150-5x,y是x的一次函數(shù).

  (4)s=40t,s既是t的一次函數(shù)又是正比例函數(shù).

 。5)y=60x,y是x的.一次函數(shù),也是x的正比例函數(shù);

 。6)y=πx2,y不是x的正比例函數(shù),也不是x的一次函數(shù);

 。7)y=50+2x,y是x的一次函數(shù),但不是x的正比例函數(shù)

  例3 已知函數(shù)y=(k-2)x+2k+1,若它是正比例函數(shù),求k的值.若它是一次函數(shù),求k的值.

  分析 根據(jù)一次函數(shù)和正比例函數(shù)的定義,易求得k的值.

  解 若y=(k-2)x+2k+1是正比例函數(shù),則2k+1=0,即k=?

  若y=(k-2)x+2k+1是一次函數(shù),則k-2≠0,即k≠2.

  例4 已知y與x-3成正比例,當(dāng)x=4時(shí),y=3.

  (1)寫(xiě)出y與x之間的函數(shù)關(guān)系式;

  (2)y與x之間是什么函數(shù)關(guān)系;

  (3)求x=2.5時(shí),y的值.

  解 (1)因?yàn)?y與x-3成正比例,所以y=k(x-3).

  又因?yàn)閤=4時(shí),y=3,所以3= k(4-3),解得k=3,

  所以y=3(x-3)=3x-9.

  (2) y是x的一次函數(shù).

  (3)當(dāng)x=2.5時(shí),y=3×2.5=7.5.

  1. 2

  例5 已知A、B兩地相距30千米,B、C兩地相距48千米.某人騎自行車(chē)以每小時(shí)12千米的速度從A地出發(fā),經(jīng)過(guò)B地到達(dá)C地.設(shè)此人騎行時(shí)間為x(時(shí)),離B地距離為y(千米).

  (1)當(dāng)此人在A、B兩地之間時(shí),求y與x的函數(shù)關(guān)系及自變量x取值范圍.

  (2)當(dāng)此人在B、C兩地之間時(shí),求y與x的函數(shù)關(guān)系及自變量x的取值范圍.

  分析 (1)當(dāng)此人在A、B兩地之間時(shí),離B地距離y為A、B兩地的距離與某人所走的路程的差.

  (2)當(dāng)此人在B、C兩地之間時(shí),離B地距離y為某人所走的路程與A、B兩地的距離的差.

  解 (1) y=30-12x.(0≤x≤2.5)

  (2) y=12x-30.(2.5≤x≤6.5)

  例6 某油庫(kù)有一沒(méi)儲(chǔ)油的儲(chǔ)油罐,在開(kāi)始的8分鐘時(shí)間內(nèi),只開(kāi)進(jìn)油管,不開(kāi)出油管,油罐的進(jìn)油至24噸后,將進(jìn)油管和出油管同時(shí)打開(kāi)16分鐘,油罐中的油從24噸增至40噸.隨后又關(guān)閉進(jìn)油管,只開(kāi)出油管,直至將油罐內(nèi)的油放完.假設(shè)在單位時(shí)間內(nèi)進(jìn)油管與出油管的流量分別保持不變.寫(xiě)出這段時(shí)間內(nèi)油罐的儲(chǔ)油量y(噸)與進(jìn)出油時(shí)間x(分)的函數(shù)式及相應(yīng)的x取值范圍.

  分析 因?yàn)樵谥淮蜷_(kāi)進(jìn)油管的8分鐘內(nèi)、后又打開(kāi)進(jìn)油管和出油管的16分鐘和最后的只開(kāi)出油管的三個(gè)階級(jí)中,儲(chǔ)油罐的儲(chǔ)油量與進(jìn)出油時(shí)間的函數(shù)關(guān)系式是不同的,所以此題因分三個(gè)時(shí)間段來(lái)考慮.但在這三個(gè)階段中,兩變量之間均為一次函數(shù)關(guān)系.

  解 在第一階段:y=3x(0≤x≤8);

  在第二階段:y=16+x(8≤x≤16);

  在第三階段:y=-2x+88(24≤x≤44).

 、.隨堂練習(xí)

  根據(jù)上表寫(xiě)出y與x之間的關(guān)系式是:________________,y是否為x一的次函數(shù)?y是否為x有正比例函數(shù)?

  2、為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,某城市規(guī)定用水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水量不超過(guò)6米3時(shí),水費(fèi)按0.6元/米3收費(fèi);每戶每月用水量超過(guò)6米3時(shí),超過(guò)部分按1元/米3收費(fèi)。設(shè)每戶每月用水量為x米3,應(yīng)繳水費(fèi)y元。

 。1)寫(xiě)出每月用水量不超過(guò)6米3和超過(guò)6米3時(shí),y與x之間的函數(shù)關(guān)系式,并判斷它們是否為一次函數(shù)。

 。2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費(fèi)。[①y=0.6x,y=x-2.4,y是x的一次函數(shù)。②y=8-2.4=5.6(元)]

  Ⅳ.課時(shí)小結(jié)

  1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。

  2、能根據(jù)已知簡(jiǎn)單信息,寫(xiě)出一次函數(shù)的表達(dá)式。

 、.課后作業(yè)

  1、已知y-3與x成正比例,且x=2時(shí),y=7

  (1)寫(xiě)出y與x之間的函數(shù)關(guān)系.

  (2)y與x之間是什么函數(shù)關(guān)系.

  (3)計(jì)算y=-4時(shí)x的值.

  2.甲市到乙市的包裹郵資為每千克0.9元,每件另加手續(xù)費(fèi)0.2元,求總郵資y(元)與包裹重量x(千克)之間的函數(shù)解析式,并計(jì)算5千克重的包裹的郵資.

  3.倉(cāng)庫(kù)內(nèi)原有粉筆400盒.如果每個(gè)星期領(lǐng)出36盒,求倉(cāng)庫(kù)內(nèi)余下的粉筆盒數(shù)Q與星期數(shù)t之間的函數(shù)關(guān)系.

  4.今年植樹(shù)節(jié),同學(xué)們種的樹(shù)苗高約1.80米.據(jù)介紹,這種樹(shù)苗在10年內(nèi)平均每年長(zhǎng)高0.35米.求樹(shù)高與年數(shù)之間的函數(shù)關(guān)系式.并算一算4年后同學(xué)們中學(xué)畢業(yè)時(shí)這些樹(shù)約有多高.

  5.按照我國(guó)稅法規(guī)定:個(gè)人月收入不超過(guò)800元,免交個(gè)人所得稅.超過(guò)800元不超過(guò)1300元部分需繳納5%的個(gè)人所得稅.試寫(xiě)出月收入在800元到1300元之間的人應(yīng)繳納的稅金y(元)和月收入x(元)之間的函數(shù)關(guān)系式.

  函數(shù)教學(xué)教案設(shè)計(jì) 7

  一、教材分析

  本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書(shū)-必修1》(人教A版)《1.2.1 函數(shù)的概念》共3課時(shí),本節(jié)課是第1課時(shí)。

  托馬斯說(shuō):“函數(shù)概念是近代數(shù)學(xué)思想之花”。 生活中的許多現(xiàn)象如物體運(yùn)動(dòng),氣溫升降,投資理財(cái)?shù)榷伎梢杂煤瘮?shù)的模型來(lái)刻畫(huà),是我們更好地了解自己、認(rèn)識(shí)世界和預(yù)測(cè)未來(lái)的重要工具。

  函數(shù)是數(shù)學(xué)的重要的基礎(chǔ)概念之一,是高等數(shù)學(xué)重多學(xué)科的基礎(chǔ)概念和重要的研究對(duì)象。同時(shí)函數(shù)也是物理學(xué)等其他學(xué)科的重要基礎(chǔ)知識(shí)和研究工具,教學(xué)內(nèi)容中蘊(yùn)涵著極其豐富的辯證思想。函數(shù)的的重要性正如恩格斯所說(shuō):“數(shù)學(xué)中的轉(zhuǎn)折點(diǎn)是笛卡爾的變數(shù),有了變數(shù),運(yùn)動(dòng)就進(jìn)入了數(shù)學(xué);有了變數(shù),辯證法就進(jìn)入了數(shù)學(xué)”。

  二、學(xué)生學(xué)習(xí)情況分析

  函數(shù)是中學(xué)數(shù)學(xué)的主體內(nèi)容,學(xué)生在中學(xué)階段對(duì)函數(shù)的認(rèn)識(shí)分三個(gè)階段:

  (一)初中從運(yùn)動(dòng)變化的角度來(lái)刻畫(huà)函數(shù),初步認(rèn)識(shí)正比例、反比例、一次和二次函數(shù);

  (二)高中用集合與對(duì)應(yīng)的觀點(diǎn)來(lái)刻畫(huà)函數(shù),研究函數(shù)的性質(zhì),學(xué)習(xí)典型的對(duì)、指、冪和三解函數(shù);

  (三)高中用導(dǎo)數(shù)工具研究函數(shù)的單調(diào)性和最值。

  1.有利條件

  現(xiàn)代教育心理學(xué)的研究認(rèn)為,有效的概念教學(xué)是建立在學(xué)生已有知識(shí)結(jié)構(gòu)的基礎(chǔ)上的,因此教師在設(shè)計(jì)教學(xué)的過(guò)程中必須注意在學(xué)生已有知識(shí)結(jié)構(gòu)中尋找新概念的固著點(diǎn),引導(dǎo)學(xué)生通過(guò)同化或順應(yīng),掌握新概念,進(jìn)而完善知識(shí)結(jié)構(gòu)。

  初中用運(yùn)動(dòng)變化的觀點(diǎn)對(duì)函數(shù)進(jìn)行定義的,它反映了歷史上人們對(duì)它的一種認(rèn)識(shí),而且這個(gè)定義較為直觀,易于接受,因此按照由淺入深、力求符合學(xué)生認(rèn)知規(guī)律的內(nèi)容編排原則,函數(shù)概念在初中介紹到這個(gè)程度是合適的。也為我們用集合與對(duì)應(yīng)的觀點(diǎn)研究函數(shù)打下了一定的基礎(chǔ)。

  2.不利條件

  用集合與對(duì)應(yīng)的觀點(diǎn)來(lái)定義函數(shù),形式和內(nèi)容上都是比較抽象的,這對(duì)學(xué)生的理解能力是一個(gè)挑戰(zhàn),是本節(jié)課教學(xué)的一個(gè)不利條件。

  三、教學(xué)目標(biāo)分析

  課標(biāo)要求:通過(guò)豐富實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫(huà)函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域.

  1.知識(shí)與能力目標(biāo):

 、拍軓募吓c對(duì)應(yīng)的角度理解函數(shù)的概念,更要理解函數(shù)的本質(zhì)屬性;

  ⑵理解函數(shù)的三要素的含義及其相互關(guān)系;

 、菚(huì)求簡(jiǎn)單函數(shù)的定義域和值域

  2.過(guò)程與方法目標(biāo):

 、磐ㄟ^(guò)豐富實(shí)例,使學(xué)生建立起函數(shù)概念的背景,體會(huì)函數(shù)是描述變量之間依賴關(guān)系的數(shù)學(xué)模型;

 、圃诤瘮(shù)實(shí)例中,通過(guò)對(duì)關(guān)鍵詞的強(qiáng)調(diào)和引導(dǎo)使學(xué)發(fā)現(xiàn)它們的共同特征,在此基礎(chǔ)上再用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫(huà)函數(shù)概念中的作用.

  3.情感、態(tài)度與價(jià)值觀目標(biāo):

  感受生活中的數(shù)學(xué),感悟事物之間聯(lián)系與變化的辯證唯物主義觀點(diǎn)。

  四、教學(xué)重點(diǎn)、難點(diǎn)分析

  1.教學(xué)重點(diǎn):對(duì)函數(shù)概念的理解,用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù);

  重點(diǎn)依據(jù):初中是從變量的角度來(lái)定義函數(shù),高中是用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù)。二者反映的本質(zhì)是一致的,即“函數(shù)是一種對(duì)應(yīng)關(guān)系”。 但是,初中定義并未完全揭示出函數(shù)概念的本質(zhì),對(duì)y?1這樣的函數(shù)用運(yùn)動(dòng)變化的觀點(diǎn)也很難解釋。在以函數(shù)為重要內(nèi)容的高中階段,課本應(yīng)將函數(shù)定義為兩個(gè)數(shù)集之間的一種對(duì)應(yīng)關(guān)系,按照這種觀點(diǎn),使我們對(duì)函數(shù)概念有了更深一層的認(rèn)識(shí),也很容易說(shuō)明y?1這函數(shù)表達(dá)式。因此,分析兩種函數(shù)概念的關(guān)系,讓學(xué)生融會(huì)貫通地理解函數(shù)的概念應(yīng)為本節(jié)課的重點(diǎn)。

  突出重點(diǎn):重點(diǎn)的突出依賴于對(duì)函數(shù)概念本質(zhì)屬性的把握,使學(xué)生通過(guò)表面的.語(yǔ)言描述抓住概念的精髓。

  2.教學(xué)難點(diǎn):第一:從實(shí)際問(wèn)題中提煉出抽象的概念;第二:符號(hào)“y=f(x)”的含義的理解.

  難點(diǎn)依據(jù):數(shù)學(xué)語(yǔ)言的抽象概括難度較大,對(duì)符號(hào)y=f(x)的理解會(huì)受到以前知識(shí)的負(fù)遷移。

  突破難點(diǎn):難點(diǎn)的突破要依托豐富的實(shí)例,從集合與對(duì)應(yīng)的角度恰當(dāng)?shù)匾龑?dǎo),而對(duì)抽象符號(hào)的理解則要結(jié)合函數(shù)的三要素和小例子進(jìn)行說(shuō)明。

  五、教法與學(xué)法分析

  1.教法分析

  本節(jié)課我主要采用教師導(dǎo)學(xué)法、知識(shí)遷移法和知識(shí)對(duì)比法,從學(xué)生熟悉的豐富實(shí)例出發(fā),關(guān)注學(xué)生的原有的知識(shí)基礎(chǔ),注重概念的形成過(guò)程,從初中的函數(shù)概念自然過(guò)度到函數(shù)的近代定我。

  2.學(xué)法分析

  在教學(xué)過(guò)程中我注意在教學(xué)中引導(dǎo)學(xué)生用模型法分析函數(shù)問(wèn)題、通過(guò)自主學(xué)習(xí)法總結(jié)“區(qū)間”的知識(shí)。

  函數(shù)教學(xué)教案設(shè)計(jì) 8

  一、教學(xué)內(nèi)容分析

  本節(jié)內(nèi)容是高一數(shù)學(xué)必修4(蘇教版)第三章《三角恒等變換》第一節(jié)的內(nèi)容,重點(diǎn)放在兩角差的余弦公式的推導(dǎo)和證明上,其次是利用公式解決一些簡(jiǎn)單的三角函數(shù)問(wèn)題。 在學(xué)習(xí)本章之前,已經(jīng)學(xué)習(xí)了三角函數(shù)及向量的有關(guān)知識(shí),從而為溝通代數(shù)、幾何與三角函數(shù)的聯(lián)系提供了重要的工具。本章我們將使用這些工具探討三角函數(shù)值的運(yùn)算。本節(jié)內(nèi)容不僅是推導(dǎo)正弦和(差)角公式、正切和(差)角公式及倍角公式的基礎(chǔ),對(duì)于三角變換,三角恒等式的證明,三角函數(shù)式的化簡(jiǎn)、求值等三角問(wèn)題的解決有重要的支撐作用,而且其推導(dǎo)過(guò)程本身就具有重要的教育價(jià)值。

  二、學(xué)生學(xué)習(xí)情況分析

  本節(jié)課的主要內(nèi)容是“兩角差的余弦公式的推導(dǎo)及證明”,用到的工具有“單位圓中三角函數(shù)的定義”和“平面向量數(shù)量積的定義及坐標(biāo)表示”,都屬于基礎(chǔ)知識(shí),內(nèi)容簡(jiǎn)單,容易理解和接受。但是在向量法證明的過(guò)程中,向量夾角的范圍是[0,π],與兩角差α-β的范圍不一致,學(xué)生對(duì)角的范圍說(shuō)明不清,是本節(jié)課的難點(diǎn)。

  三、設(shè)計(jì)思想

  教學(xué)理念:以“研究性學(xué)習(xí)”為載體,培養(yǎng)學(xué)生自主學(xué)習(xí)、小組合作的能力。

  教學(xué)原則:注重學(xué)生自主學(xué)習(xí)與探究能力的培養(yǎng),體現(xiàn)學(xué)生個(gè)性的發(fā)展與小組合作共性的融合。

  教學(xué)方法:先學(xué)后教,小組合作,師生互動(dòng)。

  四、教學(xué)目標(biāo)

  知識(shí)與技能:了解用向量法推導(dǎo)兩角差的余弦公式的過(guò)程,掌握兩角和(差)的余弦公式并能運(yùn)用公式進(jìn)行簡(jiǎn)單的三角函數(shù)式的化簡(jiǎn)、求值。

  過(guò)程與方法:自主探究?jī)山遣畹挠嘞夜降谋憩F(xiàn)形式,經(jīng)歷用向量的數(shù)量積推導(dǎo)兩角差的余弦公式的過(guò)程,并能獨(dú)立利用余弦的差角公式推出余弦的和角公式,理解化歸思想在三角變換中的作用。

  情感態(tài)度與價(jià)值觀:體驗(yàn)和感受數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的過(guò)程,感悟事物之間普遍聯(lián)系和轉(zhuǎn)化的關(guān)系。

  五、教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn):兩角差的余弦公式的推導(dǎo)及證明。

  難點(diǎn):引入向量法證明兩角差的余弦公式及兩角差范圍的說(shuō)明。

  六、教學(xué)程序設(shè)計(jì)

  1.情境創(chuàng)設(shè),課上展示。

  課前探究:

  課上展示:請(qǐng)同學(xué)們展示一下課前所得到的結(jié)果吧。

  設(shè)計(jì)意圖:課前以問(wèn)題串的形式給學(xué)生指明研究方向。問(wèn)題層層遞進(jìn),從特殊到一般,使學(xué)生的研究具有一定的坡度性。既讓學(xué)生容易上手,又讓學(xué)生在研究過(guò)程中慢慢深入與提高。

  主要目的:讓學(xué)生自主發(fā)現(xiàn)兩角差的余弦公式的表達(dá)形式。

  通過(guò)課上展示,學(xué)生把課下研究出來(lái)的成果與全班同學(xué)共享,產(chǎn)生共鳴,為進(jìn)一步研究?jī)山遣畹挠嘞夜阶龊脺?zhǔn)備,同時(shí)增強(qiáng)表達(dá)能力及自信心。

  2.合作探究,小組展示。

  探究一:兩角差的余弦公式的推導(dǎo)

  問(wèn)題4:?jiǎn)栴}2中我們所得到的結(jié)論對(duì)于任意角還成立嗎?你能證明嗎?

  問(wèn)題5:觀察我們得到結(jié)論的形式,你能聯(lián)想到什么呢?

  探究二:兩角和的余弦公式的推導(dǎo)

  問(wèn)題6:你能根據(jù)差角的余弦公式推導(dǎo)出和角的余弦公式嗎?

  問(wèn)題7:比較差角的余弦公式與和角的余弦公式,它們?cè)诮Y(jié)構(gòu)上有何異同點(diǎn)?

  通過(guò)小組展示,各個(gè)小組之間產(chǎn)生思維的碰撞,迸出火花,得到新的靈感與智慧。從而培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作與小組合作的能力。

  3.鞏固知識(shí),例題講解。

  例1:利用兩角和與差的余弦公式證明下列誘導(dǎo)公式:

  例3:化簡(jiǎn)cos100°cos40°+sin80°sin40°

  設(shè)計(jì)意圖:教師對(duì)各小組展示內(nèi)容做適當(dāng)點(diǎn)評(píng),并且對(duì)“向量法證明的優(yōu)點(diǎn)”,“向量法證明過(guò)程的完善”,“向量法中向量夾角與兩角差的范圍的統(tǒng)一”做簡(jiǎn)要講解。

  例1,例2都是公式的直接應(yīng)用。例1讓學(xué)生體會(huì)誘導(dǎo)公式將余弦的和差角公式推導(dǎo)出正弦的和差角公式,為下節(jié)課埋下伏筆。例2中根據(jù)cos15°的值求sin15°的值,tan15°的值的過(guò)程都是為推導(dǎo)正弦和差公式,正切和差公式做鋪墊。

  變式將例2中具體的角變成抽象的角,利用同角三角函數(shù)公式求解。在由sinα的值求cosα的值或由cosβ的'值求sinβ的值時(shí),要注意根據(jù)角的范圍確定三角函數(shù)值的符號(hào)。 例3:是公式的逆用,培養(yǎng)學(xué)生逆向思維的能力,讓學(xué)生對(duì)公式結(jié)構(gòu)再認(rèn)識(shí)。

  4.提升總結(jié),鞏固練習(xí)。

  提升總結(jié):針對(duì)上面的3個(gè)例題,談?wù)勀銓W(xué)到了什么?

 。2)利用兩角和差的余弦公式求值時(shí),應(yīng)注意觀察、分析題設(shè)和公式的結(jié)構(gòu)特點(diǎn),從整體上把握公式,靈活的運(yùn)用公式。

 。3)在解題過(guò)程中,要注意角的范圍,確定三角函數(shù)值的符號(hào),以防增根、漏根。 設(shè)計(jì)意圖:主要以學(xué)生總結(jié)為主,老師做適當(dāng)點(diǎn)評(píng)及補(bǔ)充。

  七、教學(xué)反思

  本節(jié)課主要以學(xué)生的自主學(xué)習(xí)、小組合作為主,充分發(fā)揮了學(xué)生的自主探究能力和團(tuán)隊(duì)協(xié)作能力,提高了學(xué)生發(fā)現(xiàn)問(wèn)題、探究問(wèn)題和解決問(wèn)題的能力。情境創(chuàng)設(shè)中利用三個(gè)問(wèn)題讓學(xué)生在課前提前熟悉本節(jié)課所學(xué)的內(nèi)容“是什么”,“我能得到哪些結(jié)論”,調(diào)動(dòng)了學(xué)生的思維與學(xué)習(xí)的積極性,激發(fā)了學(xué)生的求知欲。但是

  但是如果給出圖像,則又會(huì)限制數(shù)學(xué)優(yōu)秀的學(xué)生的解題思路與方法,這對(duì)矛盾是由學(xué)生的差異所決定的。教師在課堂上應(yīng)指導(dǎo)、啟發(fā)學(xué)生,注意教學(xué)的示范性,明確解題的規(guī)范性,實(shí)現(xiàn)學(xué)生在學(xué)習(xí)過(guò)程中知識(shí)的跨越。總之,教學(xué)有法,教無(wú)定法,貴在得法,為了提高課堂教學(xué)效率,我們要從學(xué)生的實(shí)際出發(fā),以學(xué)法帶動(dòng)教法,為高效課堂保駕護(hù)航。

  函數(shù)教學(xué)教案設(shè)計(jì) 9

  學(xué)習(xí)目標(biāo)

  1.函數(shù)奇偶性的概念

  2.由函數(shù)圖象研究函數(shù)的奇偶性

  3.函數(shù)奇偶性的判斷

  重點(diǎn):能運(yùn)用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性

  難點(diǎn):理解函數(shù)的奇偶性

  知識(shí)梳理:

  1.軸對(duì)稱圖形:

  2中心對(duì)稱圖形:

  【概念探究】

  1. 畫(huà)出函數(shù) ,與 的圖像;并觀察兩個(gè)函數(shù)圖像的對(duì)稱性。

  2. 求出 , 時(shí)的函數(shù)值,寫(xiě)出 , 。

  結(jié)論: 。

  3. 奇函數(shù):___________________________________________________

  4.偶函數(shù):______________________________________________________

  【概念深化】

  (1)、強(qiáng)調(diào)定義中任意二字,奇偶性是函數(shù)在定義域上的整體性質(zhì)。

  (2)、奇函數(shù)偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱。

  5、奇函數(shù)與偶函數(shù)圖像的對(duì)稱性:

  如果一個(gè)函數(shù)是奇函數(shù),則這個(gè)函數(shù)的圖像是以坐標(biāo)原點(diǎn)為對(duì)稱中心的__________。反之,如果一個(gè)函數(shù)的圖像是以坐標(biāo)原點(diǎn)為對(duì)稱中心的中心對(duì)稱圖形,則這個(gè)函數(shù)是___________。

  如果一個(gè)函數(shù)是偶函數(shù),則這個(gè)函數(shù)的圖像是以 軸為對(duì)稱軸的__________。反之,如果一個(gè)函數(shù)的圖像是關(guān)于 軸對(duì)稱,則這個(gè)函數(shù)是___________。

  6. 根據(jù)函數(shù)的`奇偶性,函數(shù)可以分為_(kāi)___________________________________.

  題型一:判定函數(shù)的奇偶性。

  例1、判斷下列函數(shù)的奇偶性:

  (1) (2) (3)

  (4) (5)

  練習(xí):教材第49頁(yè),練習(xí)A第1題

  總結(jié):根據(jù)例題,你能給出用定義判斷函數(shù)奇偶性的步驟?

  題型二:利用奇偶性求函數(shù)解析式

  例2:若f(x)是定義在R上的奇函數(shù),當(dāng)x0時(shí),f(x)=x(1-x),求當(dāng) 時(shí)f(x)的解析式。

  練習(xí):若f(x)是定義在R上的奇函數(shù),當(dāng)x0時(shí),f(x)=x|x-2|,求當(dāng)x0時(shí)f(x)的解析式。

  已知定義在實(shí)數(shù)集 上的奇函數(shù) 滿足:當(dāng)x0時(shí), ,求 的表達(dá)式

  題型三:利用奇偶性作函數(shù)圖像

  例3 研究函數(shù) 的`性質(zhì)并作出它的圖像

  練習(xí):教材第49練習(xí)A第3,4,5題,練習(xí)B第1,2題

  當(dāng)堂檢測(cè)

  1 已知 是定義在R上的奇函數(shù),則( D )

  A. B. C. D.

  2 如果偶函數(shù) 在區(qū)間 上是減函數(shù),且最大值為7,那么 在區(qū)間 上是( B )

  A. 增函數(shù)且最小值為-7 B. 增函數(shù)且最大值為7

  C. 減函數(shù)且最小值為-7 D. 減函數(shù)且最大值為7

  3 函數(shù) 是定義在區(qū)間 上的偶函數(shù),且 ,則下列各式一定成立的是(C )

  A. B. C. D.

  4 已知函數(shù) 為奇函數(shù),若 ,則 -1

  5 若 是偶函數(shù),則 的單調(diào)增區(qū)間是

  6 下列函數(shù)中不是偶函數(shù)的是(D )

  A B C D

  7 設(shè)f(x)是R上的偶函數(shù),切在 上單調(diào)遞減,則f(-2),f(- ),f(3)的大小關(guān)系是( A )

  A B f(- )f(-2) f(3) C f(- )

  8 奇函數(shù) 的圖像必經(jīng)過(guò)點(diǎn)( C )

  A (a,f(-a)) B (-a,f(a)) C (-a,-f(a)) D (a,f( ))

  9 已知函數(shù) 為偶函數(shù),其圖像與x軸有四個(gè)交點(diǎn),則方程f(x)=0的所有實(shí)根之和是( A )

  A 0 B 1 C 2 D 4

  10 設(shè)f(x)是定義在R上的奇函數(shù),且x0時(shí),f(x)= ,則f(-2)=_-5__

  11若f(x)在 上是奇函數(shù),且f(3)_f(-1)

  12.解答題

  用定義判斷函數(shù) 的奇偶性。

  13定義證明函數(shù)的奇偶性

  已知函數(shù) 在區(qū)間D上是奇函數(shù),函數(shù) 在區(qū)間D上是偶函數(shù),求證: 是奇函數(shù)

  14利用函數(shù)的奇偶性求函數(shù)的解析式:

  已知分段函數(shù) 是奇函數(shù),當(dāng) 時(shí)的解析式為 ,求這個(gè)函數(shù)在區(qū)間 上的解析表達(dá)式。

  函數(shù)教學(xué)教案設(shè)計(jì) 10

  教材:已知三角函數(shù)值求角(反正弦,反余弦函數(shù))

  目的:要求學(xué)生初步(了解)理解反正弦、反余弦函數(shù)的意義,會(huì)由已知角的正弦值、余弦值求出 范圍內(nèi)的角,并能用反正弦,反余弦的符號(hào)表示角或角的集合。

  過(guò)程:

  一、簡(jiǎn)單理解反正弦,反余弦函數(shù)的意義。

  由

  1在R上無(wú)反函數(shù)。

  2在 上, x與y是一一對(duì)應(yīng)的,且區(qū)間 比較簡(jiǎn)單

  在 上, 的反函數(shù)稱作反正弦函數(shù),記作 ,(奇函數(shù))。

  同理,由

  在 上, 的反函數(shù)稱作反余弦函數(shù),記作

  二、已知三角函數(shù)求角

  首先應(yīng)弄清:已知角求三角函數(shù)值是單值的。

  已知三角函數(shù)值求角是多值的。

  例一、1、已知 ,求x

  解: 在 上正弦函數(shù)是單調(diào)遞增的,且符合條件的角只有一個(gè)

  (即 )

  2、已知

  解: , 是第一或第二象限角。

  即( )。

  3、已知

  解: x是第三或第四象限角。

  (即 或 )

  這里用到 是奇函數(shù)。

  例二、1、已知 ,求

  解:在 上余弦函數(shù) 是單調(diào)遞減的,且符合條件的角只有一個(gè)

  2、已知 ,且 ,求x的值。

  解: , x是第二或第三象限角。

  3、已知 ,求x的值。

  解:由上題: 。

  介紹:∵

  上題

  例三、(見(jiàn)課本P74-P75)略。

  三、小結(jié):求角的`多值性

  法則:1、先決定角的象限。

  2、如果函數(shù)值是正值,則先求出對(duì)應(yīng)的銳角x;

  如果函數(shù)值是負(fù)值,則先求出與其絕對(duì)值對(duì)應(yīng)的銳角x,3、由誘導(dǎo)公式,求出符合條件的其它象限的角。

  四、作業(yè):

  P76-77 練習(xí) 3

  習(xí)題4.11 1,2,3,4中有關(guān)部分。

  函數(shù)教學(xué)教案設(shè)計(jì) 11

  教學(xué)目標(biāo)

  會(huì)運(yùn)用圖象判斷單調(diào)性;理解函數(shù)的單調(diào)性,能判斷或證明一些簡(jiǎn)單函數(shù)單調(diào)性;注意必須在定義域內(nèi)或其子集內(nèi)討論函數(shù)的單調(diào)性。

  重 點(diǎn)

  函數(shù)單調(diào)性的證明及判斷。

  難 點(diǎn)

  函數(shù)單調(diào)性證明及其應(yīng)用。

  一、復(fù)習(xí)引入

  1、函數(shù)的定義域、值域、圖象、表示方法

  2、函數(shù)單調(diào)性

  (1)單調(diào)增函數(shù)

  (2)單調(diào)減函數(shù)

  (3)單調(diào)區(qū)間

  二、例題分析

  例1、畫(huà)出下列函數(shù)圖象,并寫(xiě)出單調(diào)區(qū)間:

  (1) (2) (2)

  例2、求證:函數(shù) 在區(qū)間 上是單調(diào)增函數(shù)。

  例3、討論函數(shù) 的單調(diào)性,并證明你的結(jié)論。

  變(1)討論函數(shù) 的單調(diào)性,并證明你的結(jié)論

  變(2)討論函數(shù) 的單調(diào)性,并證明你的結(jié)論。

  例4、試判斷函數(shù) 在 上的`單調(diào)性。

  三、隨堂練習(xí)

  1、判斷下列說(shuō)法正確的是 。

  (1)若定義在 上的函數(shù) 滿足 ,則函數(shù) 是 上的單調(diào)增函數(shù);

  (2)若定義在 上的函數(shù) 滿足 ,則函數(shù) 在 上不是單調(diào)減函數(shù);

  (3)若定義在 上的.函數(shù) 在區(qū)間 上是單調(diào)增函數(shù),在區(qū)間 上也是單調(diào)增函數(shù),則函數(shù) 是 上的單調(diào)增函數(shù);

  (4)若定義在 上的函數(shù) 在區(qū)間 上是單調(diào)增函數(shù),在區(qū)間 上也是單調(diào)增函數(shù),則函數(shù) 是 上的單調(diào)增函數(shù)。

  2、若一次函數(shù) 在 上是單調(diào)減函數(shù),則點(diǎn) 在直角坐標(biāo)平面的( )

  A.上半平面 B.下半平面 C.左半平面 D.右半平面

  3、函數(shù) 在 上是___ ___;函數(shù) 在 上是__ _____。

  3.下圖分別為函數(shù) 和 的圖象,求函數(shù) 和 的單調(diào)增區(qū)間。

  4、求證:函數(shù) 是定義域上的單調(diào)減函數(shù)。

  四、回顧小結(jié)

  1、函數(shù)單調(diào)性的判斷及證明。

  課后作業(yè)

  一、基礎(chǔ)題

  1、求下列函數(shù)的單調(diào)區(qū)間

  (1) (2)

  2、畫(huà)函數(shù) 的圖象,并寫(xiě)出單調(diào)區(qū)間。

  二、提高題

  3、求證:函數(shù) 在 上是單調(diào)增函數(shù)。

  4、若函數(shù) ,求函數(shù) 的單調(diào)區(qū)間。

  5、若函數(shù) 在 上是增函數(shù),在 上是減函數(shù),試比較 與 的大小。

  三、能力題

  6、已知函數(shù) ,試討論函數(shù)f(x)在區(qū)間 上的單調(diào)性。

  變(1)已知函數(shù) ,試討論函數(shù)f(x)在區(qū)間 上的單調(diào)性。

  函數(shù)教學(xué)教案設(shè)計(jì) 12

  知識(shí)技能目標(biāo)

  1、理解反比例函數(shù)的圖象是雙曲線,利用描點(diǎn)法畫(huà)出反比例函數(shù)的圖象,說(shuō)出它的性質(zhì);

  2、利用反比例函數(shù)的圖象解決有關(guān)問(wèn)題。

  過(guò)程性目標(biāo)

  1、經(jīng)歷對(duì)反比例函數(shù)圖象的觀察、分析、討論、概括過(guò)程,會(huì)說(shuō)出它的性質(zhì);

  2、探索反比例函數(shù)的圖象的性質(zhì),體會(huì)用數(shù)形結(jié)合思想解數(shù)學(xué)問(wèn)題。

  教學(xué)過(guò)程

  一、創(chuàng)設(shè)情境

  上節(jié)的練習(xí)中,我們畫(huà)出了問(wèn)題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線。那么它是怎么樣的曲線呢?本節(jié)課,我們就來(lái)討論一般的反比例函數(shù)(k是常數(shù),k≠0)的圖象,探究它有什么性質(zhì)。

  二、探究歸納

  1、畫(huà)出函數(shù)的圖象。

  分析畫(huà)出函數(shù)圖象一般分為列表、描點(diǎn)、連線三個(gè)步驟,在反比例函數(shù)中自變量x≠0。

  解

  1、列表:這個(gè)函數(shù)中自變量x的取值范圍是不等于零的一切實(shí)數(shù),列出x與y的對(duì)應(yīng)值:

  2、描點(diǎn):用表里各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出在京各點(diǎn)點(diǎn)(—6,—1)、(—3,—2)、(—2,—3)等。

  3、連線:用平滑的曲線將第一象限各點(diǎn)依次連起來(lái),得到圖象的第一個(gè)分支;用平滑的曲線將第三象限各點(diǎn)依次連起來(lái),得到圖象的另一個(gè)分支。這兩個(gè)分支合起來(lái),就是反比例函數(shù)的圖象。

  上述圖象,通常稱為雙曲線(hyperbola)。

  提問(wèn)這兩條曲線會(huì)與x軸、y軸相交嗎?為什么?

  學(xué)生試一試:畫(huà)出反比例函數(shù)的圖象(學(xué)生動(dòng)手畫(huà)反比函數(shù)圖象,進(jìn)一步掌握畫(huà)函數(shù)圖象的步驟)。

  學(xué)生討論、交流以下問(wèn)題,并將討論、交流的結(jié)果回答問(wèn)題。

  1、這個(gè)函數(shù)的圖象在哪兩個(gè)象限?和函數(shù)的圖象有什么不同?

  2、反比例函數(shù)(k≠0)的圖象在哪兩個(gè)象限內(nèi)?由什么確定?

  3、聯(lián)系一次函數(shù)的性質(zhì),你能否總結(jié)出反比例函數(shù)中隨著自變量x的增加,函數(shù)y將怎樣變化?有什么規(guī)律?

  反比例函數(shù)有下列性質(zhì):

  (1)當(dāng)k>0時(shí),函數(shù)的`圖象在第一、三象限,在每個(gè)象限內(nèi),曲線從左向右下降,也就是在每個(gè)象限內(nèi)y隨x的增加而減少;

 。2)當(dāng)k<0時(shí),函數(shù)的圖象在第二、四象限,在每個(gè)象限內(nèi),曲線從左向右上升,也就是在每個(gè)象限內(nèi)y隨x的增加而增加。

  注

  1、雙曲線的兩個(gè)分支與x軸和y軸沒(méi)有交點(diǎn);

  2、雙曲線的兩個(gè)分支關(guān)于原點(diǎn)成中心對(duì)稱。

  以上兩點(diǎn)性質(zhì)在上堂課的問(wèn)題1和問(wèn)題2中反映了怎樣的實(shí)際意義?

  在問(wèn)題1中反映了汽車(chē)比自行車(chē)的速度快,小華乘汽車(chē)比騎自行車(chē)到鎮(zhèn)上的時(shí)間少。

  在問(wèn)題2中反映了在面積一定的情況下,飼養(yǎng)場(chǎng)的一邊越長(zhǎng),另一邊越小。

  三、實(shí)踐應(yīng)用

  例1若反比例函數(shù)的圖象在第二、四象限,求m的值。

  分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+1<0,由這兩個(gè)條件可解出m的值。

  解由題意,得解得。

  例2已知反比例函數(shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,求一次函數(shù)y=kx—k的圖象經(jīng)過(guò)的象限。

  分析由于反比例函數(shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,因此k<0,而一次函數(shù)y=kx—k中,k<0,可知,圖象過(guò)二、四象限,又—k>0,所以直線與y軸的交點(diǎn)在x軸的上方。

  解因?yàn)榉幢壤瘮?shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,所以k<0,所以一次函數(shù)y=kx—k的圖象經(jīng)過(guò)一、二、四象限。

  例3已知反比例函數(shù)的圖象過(guò)點(diǎn)(1,—2)。

  (1)求這個(gè)函數(shù)的解析式,并畫(huà)出圖象;

 。2)若點(diǎn)A(—5,m)在圖象上,則點(diǎn)A關(guān)于兩坐標(biāo)軸和原點(diǎn)的對(duì)稱點(diǎn)是否還在圖象上?

  分析(1)反比例函數(shù)的圖象過(guò)點(diǎn)(1,—2),即當(dāng)x=1時(shí),y=—2。由待定系數(shù)法可求出反比例函數(shù)解析式;再根據(jù)解析式,通過(guò)列表、描點(diǎn)、連線可畫(huà)出反比例函數(shù)的圖象;

 。2)由點(diǎn)A在反比例函數(shù)的圖象上,易求出m的值,再驗(yàn)證點(diǎn)A關(guān)于兩坐標(biāo)軸和原點(diǎn)的對(duì)稱點(diǎn)是否在圖象上。

  解(1)設(shè):反比例函數(shù)的解析式為:(k≠0)。

  而反比例函數(shù)的圖象過(guò)點(diǎn)(1,—2),即當(dāng)x=1時(shí),y=—2。

  所以,k=—2。

  即反比例函數(shù)的解析式為:。

 。2)點(diǎn)A(—5,m)在反比例函數(shù)圖象上,所以,點(diǎn)A的坐標(biāo)為。

  點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)不在這個(gè)圖象上;

  點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)不在這個(gè)圖象上;

  點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱點(diǎn)在這個(gè)圖象上;

  例4已知函數(shù)為反比例函數(shù)。

  (1)求m的值;

  (2)它的圖象在第幾象限內(nèi)?在各象限內(nèi),y隨x的增大如何變化?

 。3)當(dāng)—3≤x≤時(shí),求此函數(shù)的最大值和最小值。

  解(1)由反比例函數(shù)的.定義可知:解得,m=—2。

  (2)因?yàn)椤?<0,所以反比例函數(shù)的圖象在第二、四象限內(nèi),在各象限內(nèi),y隨x的增大而增大。

  (3)因?yàn)樵诘趥(gè)象限內(nèi),y隨x的增大而增大,所以當(dāng)x=時(shí),y最大值=;

  當(dāng)x=—3時(shí),y最小值=。

  所以當(dāng)—3≤x≤時(shí),此函數(shù)的最大值為8,最小值為。

  例5一個(gè)長(zhǎng)方體的體積是100立方厘米,它的長(zhǎng)是y厘米,寬是5厘米,高是x厘米。

 。1)寫(xiě)出用高表示長(zhǎng)的函數(shù)關(guān)系式;

 。2)寫(xiě)出自變量x的取值范圍;

 。3)畫(huà)出函數(shù)的圖象。

  解(1)因?yàn)?00=5xy,所以。

 。2)x>0。

 。3)圖象如下:

  說(shuō)明由于自變量x>0,所以畫(huà)出的反比例函數(shù)的圖象只是位于第一象限內(nèi)的一個(gè)分支。

  四、交流反思

  本節(jié)課學(xué)習(xí)了畫(huà)反比例函數(shù)的圖象和探討了反比例函數(shù)的性質(zhì)。

  1、反比例函數(shù)的圖象是雙曲線(hyperbola)。

  2、反比例函數(shù)有如下性質(zhì):

 。1)當(dāng)k>0時(shí),函數(shù)的圖象在第一、三象限,在每個(gè)象限內(nèi),曲線從左向右下降,也就是在每個(gè)象限內(nèi)y隨x的增加而減少;

 。2)當(dāng)k<0時(shí),函數(shù)的圖象在第二、四象限,在每個(gè)象限內(nèi),曲線從左向右上升,也就是在每個(gè)象限內(nèi)y隨x的增加而增加。

  五、檢測(cè)反饋

  1、在同一直角坐標(biāo)系中畫(huà)出下列函數(shù)的圖象:

 。1);(2)。

  2、已知y是x的反比例函數(shù),且當(dāng)x=3時(shí),y=8,求:

  (1)y和x的函數(shù)關(guān)系式;

 。2)當(dāng)時(shí),y的值;

  (3)當(dāng)x取何值時(shí),?

  3、若反比例函數(shù)的圖象在所在象限內(nèi),y隨x的增大而增大,求n的值。

  4、已知反比例函數(shù)經(jīng)過(guò)點(diǎn)A(2,—m)和B(n,2n),求:

 。1)m和n的值;

  (2)若圖象上有兩點(diǎn)P1(x1,y1)和P2(x2,y2),且x1<0

  函數(shù)教學(xué)教案設(shè)計(jì) 13

  教學(xué)準(zhǔn)備

  1、教學(xué)目標(biāo)

  1、知識(shí)與技能:

  函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型。高中階段不僅把函數(shù)看成變量之間的依。

  賴關(guān)系,同時(shí)還用集合與對(duì)應(yīng)的語(yǔ)言刻畫(huà)函數(shù),高中階段更注重函數(shù)模型化的思想與意識(shí)。

  2、過(guò)程與方法:

 。1)通過(guò)實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫(huà)函數(shù)概念中的作用;

  (2)了解構(gòu)成函數(shù)的要素;

 。3)會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域;

 。4)能夠正確使用“區(qū)間”的符號(hào)表示函數(shù)的定義域;

  3、情感態(tài)度與價(jià)值觀,使學(xué)生感受到學(xué)習(xí)函數(shù)的必要性和重要性,激發(fā)學(xué)習(xí)的積極性。

  教學(xué)重點(diǎn)/難點(diǎn)

  重點(diǎn):理解函數(shù)的模型化思想,用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù);

  難點(diǎn):符號(hào)“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;

  教學(xué)用具

  多媒體

  4.標(biāo)簽

  函數(shù)及其表示

  教學(xué)過(guò)程

 。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題

  1、復(fù)習(xí)初中所學(xué)函數(shù)的概念,強(qiáng)調(diào)函數(shù)的模型化思想;

  2、閱讀課本引例,體會(huì)函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:

 。1)炮彈的射高與時(shí)間的變化關(guān)系問(wèn)題;

 。2)南極臭氧空洞面積與時(shí)間的變化關(guān)系問(wèn)題;

 。3)“八五”計(jì)劃以來(lái)我國(guó)城鎮(zhèn)居民的恩格爾系數(shù)與時(shí)間的變化關(guān)系問(wèn)題。

  3、分析、歸納以上三個(gè)實(shí)例,它們有什么共同點(diǎn);

  4、引導(dǎo)學(xué)生應(yīng)用集合與對(duì)應(yīng)的語(yǔ)言描述各個(gè)實(shí)例中兩個(gè)變量間的依賴關(guān)系;

  5、根據(jù)初中所學(xué)函數(shù)的概念,判斷各個(gè)實(shí)例中的兩個(gè)變量間的關(guān)系是否是函數(shù)關(guān)系。

 。ǘ┭刑叫轮

  1、函數(shù)的有關(guān)概念

 。1)函數(shù)的概念:

  設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的`任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù)(function)

  記作:y=f(x),x∈A.

  其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range)。

  注意:

  ①“y=f(x)”是函數(shù)符號(hào),可以用任意的字母表示,如“y=g(x)”;

 、诤瘮(shù)符號(hào)“y=f(x)”中的f(x)表示與x對(duì)應(yīng)的函數(shù)值,一個(gè)數(shù),而不是f乘x。

  (2)構(gòu)成函數(shù)的三要素是什么?

  定義域、對(duì)應(yīng)關(guān)系和值域

 。3)區(qū)間的概念

 、賲^(qū)間的分類:開(kāi)區(qū)間、閉區(qū)間、半開(kāi)半閉區(qū)間;

 、跓o(wú)窮區(qū)間;

  ③區(qū)間的數(shù)軸表示。

 。4)初中學(xué)過(guò)哪些函數(shù)?它們的定義域、值域、對(duì)應(yīng)法則分別是什么?

  通過(guò)三個(gè)已知的函數(shù):y=ax+b(a≠0)

  y=ax2+bx+c(a≠0)

  y=(k≠0)比較描述性定義和集合,與對(duì)應(yīng)語(yǔ)言刻畫(huà)的定義,談?wù)勼w會(huì)。

  師:歸納總結(jié)

 。ㄈ┵|(zhì)疑答辯,排難解惑,發(fā)展思維。

  1、如何求函數(shù)的定義域

  例1:已知函數(shù)f(x)=+

 。1)求函數(shù)的定義域;

 。2)求f(-3),f()的值;

 。3)當(dāng)a>0時(shí),求f(a),f(a-1)的值。

  分析:函數(shù)的定義域通常由問(wèn)題的實(shí)際背景確定,如前所述的三個(gè)實(shí)例.如果只給出解析式y(tǒng)=f(x),而沒(méi)有指明它的定義域,那么函數(shù)的定義域就是指能使這個(gè)式子有意義的實(shí)數(shù)的集合,函數(shù)的定義域、值域要寫(xiě)成集合或區(qū)間的形式.

  例2、設(shè)一個(gè)矩形周長(zhǎng)為80,其中一邊長(zhǎng)為x,求它的面積關(guān)于x的函數(shù)的解析式,并寫(xiě)出定義域.

  分析:由題意知,另一邊長(zhǎng)為x,且邊長(zhǎng)x為正數(shù),所以0<x<40。

  所以s==(40-x)x(0<x<40)

  引導(dǎo)學(xué)生小結(jié)幾類函數(shù)的定義域:

  (1)如果f(x)是整式,那么函數(shù)的定義域是實(shí)數(shù)集R。

  2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實(shí)數(shù)的集合。

  (3)如果f(x)是二次根式,那么函數(shù)的定義域是使根號(hào)內(nèi)的式子大于或等于零的實(shí)數(shù)的集合。

 。4)如果f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實(shí)數(shù)集合。(即求各集合的交集)

 。5)滿足實(shí)際問(wèn)題有意義。

  鞏固練習(xí):課本P19第1

  2、如何判斷兩個(gè)函數(shù)是否為同一函數(shù)

  例3、下列函數(shù)中哪個(gè)與函數(shù)y=x相等?

  分析:

  1構(gòu)成函數(shù)三個(gè)要素是定義域、對(duì)應(yīng)關(guān)系和值域。由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))

  2兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無(wú)關(guān)。

  解:

  課本P18例2

  (四)歸納小結(jié)

  ①?gòu)木唧w實(shí)例引入了函數(shù)的概念,用集合與對(duì)應(yīng)的語(yǔ)言描述了函數(shù)的定義及其相關(guān)概念;②初步介紹了求函數(shù)定義域和判斷同一函數(shù)的基本方法,同時(shí)引出了區(qū)間的概念。

  (五)設(shè)置問(wèn)題,留下懸念

  1、課本P24習(xí)題1.2(A組)第1—7題(B組)第1題

  2、舉出生活中函數(shù)的例子(三個(gè)以上),并用集合與對(duì)應(yīng)的語(yǔ)言來(lái)描述函數(shù),同時(shí)說(shuō)出函數(shù)的定義域、值域和對(duì)應(yīng)關(guān)系。

  課堂小結(jié)

  函數(shù)教學(xué)教案設(shè)計(jì) 14

  教學(xué)目標(biāo):

  1.通過(guò)現(xiàn)實(shí)生活中豐富的實(shí)例,讓學(xué)生了解函數(shù)概念產(chǎn)生的背景,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù)的概念,掌握函數(shù)是特殊的數(shù)集之間的對(duì)應(yīng);

  2.了解構(gòu)成函數(shù)的要素,理解函數(shù)的定義域、值域的定義,會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域;

  3.通過(guò)教學(xué),逐步培養(yǎng)學(xué)生由具體逐步過(guò)渡到符號(hào)化,代數(shù)式化,并能對(duì)以往學(xué)習(xí)過(guò)的知識(shí)進(jìn)行理性化思考,對(duì)事物間的聯(lián)系的一種數(shù)學(xué)化的思考。

  教學(xué)重點(diǎn):

  兩集合間用對(duì)應(yīng)來(lái)描述函數(shù)的概念;求基本函數(shù)的定義域和值域。

  教學(xué)過(guò)程:

  一、問(wèn)題情境

  1.情境。

  正方形的邊長(zhǎng)為a,則正方形的周長(zhǎng)為 ,面積為 。

  2.問(wèn)題。

  在初中,我們?cè)J(rèn)識(shí)利用函數(shù)來(lái)描述兩個(gè)變量之間的關(guān)系,如何定義函數(shù)?常見(jiàn)的函數(shù)模型有哪些?

  二、學(xué)生活動(dòng)

  1.復(fù)述初中所學(xué)函數(shù)的概念;

  2.閱讀課本23頁(yè)的問(wèn)題(1)、(2)、(3),并分別說(shuō)出對(duì)其理解;

  3.舉出生活中的實(shí)例,進(jìn)一步說(shuō)明函數(shù)的對(duì)應(yīng)本質(zhì)。

  三、數(shù)學(xué)建構(gòu)

  1.用集合的`語(yǔ)言分別闡述23頁(yè)的問(wèn)題(1)、(2)、(3);

  問(wèn)題1 某城市在某一天24小時(shí)內(nèi)的氣溫變化情況如下圖所示,試根據(jù)函數(shù)圖象回答下列問(wèn)題:

 。1)這一變化過(guò)程中,有哪幾個(gè)變量?

 。2)這幾個(gè)變量的范圍分別是多少?

  問(wèn)題2 略.

  問(wèn)題3 略(詳見(jiàn)23頁(yè)).

  2.函數(shù):一般地,設(shè)A、B是兩個(gè)非空的數(shù)集,如果按某種對(duì)應(yīng)法則f,對(duì)于集合A中的每一個(gè)元素x,在集合B中都有惟一的元素和它對(duì)應(yīng),這樣的對(duì)應(yīng)叫做從A到B的'一個(gè)函數(shù),通常記為=f(x),x∈A.其中,所有輸入值x組成的集合A叫做函數(shù)=f(x)的定義域.

  (1)函數(shù)作為一種數(shù)學(xué)模型,主要用于刻畫(huà)兩個(gè)變量之間的關(guān)系;

  (2)函數(shù)的本質(zhì)是一種對(duì)應(yīng);

 。3)對(duì)應(yīng)法則f可以是一個(gè)數(shù)學(xué)表達(dá)式,也可是一個(gè)圖形或是一個(gè)表格

  (4)對(duì)應(yīng)是建立在A、B兩個(gè)非空的數(shù)集之間.可以是有限集,當(dāng)然也就可以是單元集,如f(x)=2x,(x=0).

  3.函數(shù)=f(x)的定義域:

 。1)每一個(gè)函數(shù)都有它的定義域,定義域是函數(shù)的生命線;

 。2)給定函數(shù)時(shí)要指明函數(shù)的定義域,對(duì)于用解析式表示的集合,如果沒(méi)

  有指明定義域,那么就認(rèn)為定義域?yàn)橐磺袑?shí)數(shù).

  四、數(shù)學(xué)運(yùn)用

  例1.判斷下列對(duì)應(yīng)是否為集合A 到 B的函數(shù):

  (1)A={1,2,3,4,5},B={2,4,6,8,10},f:x→2x;

 。2)A={1,2,3,4,5},B={0,2,4,6,8},f:x→2x;

 。3)A={1,2,3,4,5},B=N,f:x→2x.

  練習(xí):判斷下列對(duì)應(yīng)是否為函數(shù):

 。1)x→2x,x≠0,x∈R;

  (2)x→,這里2=x,x∈N,∈R。

  例2 求下列函數(shù)的定義域:

 。1)f(x)=x—1;(2)g(x)=x+1+1x。

  例3 下列各組函數(shù)中,是否表示同一函數(shù)?為什么?

  A.=x與=(x)2; B.=x2與=3x3;

  C.=2x-1(x∈R)與=2t-1(t∈R); D.=x+2x-2與=x2-4

  練習(xí):課本26頁(yè)練習(xí)1~4,6.

  五、回顧小結(jié)

  1.生活中兩個(gè)相關(guān)變量的刻畫(huà)→函數(shù)→對(duì)應(yīng)(A→B)

  2.函數(shù)的對(duì)應(yīng)本質(zhì);

  3.函數(shù)的對(duì)應(yīng)法則和定義域.

  六、作業(yè):

  課堂作業(yè):課本31頁(yè)習(xí)題2.1(1)第1,2兩題.

  函數(shù)教學(xué)教案設(shè)計(jì) 15

  一、教學(xué)目的

  1.使學(xué)生進(jìn)一步理解自變量的取值范圍和函數(shù)值的意義.

  2.使學(xué)生會(huì)用描點(diǎn)法畫(huà)出簡(jiǎn)單函數(shù)的圖象.

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):1.理解與認(rèn)識(shí)函數(shù)圖象的意義.

  2.培養(yǎng)學(xué)生的看圖、識(shí)圖能力.

  難點(diǎn):在畫(huà)圖的三個(gè)步驟的列表中,如何恰當(dāng)?shù)剡x取自變量與函數(shù)的對(duì)應(yīng)值問(wèn)題.

  三、教學(xué)過(guò)程

  復(fù)習(xí)提問(wèn)

  1.函數(shù)有哪三種表示法?(答:解析法、列表法、圖象法.)

  2.結(jié)合函數(shù)y=x的圖象,說(shuō)明什么是函數(shù)的圖象?

  3.說(shuō)出下列各點(diǎn)所在象限或坐標(biāo)軸:

  新課

  1.畫(huà)函數(shù)圖象的方法是描點(diǎn)法.其步驟:

  (1)列表.要注意適當(dāng)選取自變量與函數(shù)的對(duì)應(yīng)值.什么叫“適當(dāng)”?——這就要求能選取表現(xiàn)函數(shù)圖象特征的幾個(gè)關(guān)鍵點(diǎn).比如畫(huà)函數(shù)y=3x的圖象,其關(guān)鍵點(diǎn)是原點(diǎn)(0,0),只要再選取另一個(gè)點(diǎn)如M(3,9)就可以了.

  一般地,我們把自變量與函數(shù)的對(duì)應(yīng)值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),這就要把自變量與函數(shù)的對(duì)應(yīng)值列出表來(lái).

  (2)描點(diǎn).我們把表中給出的有序?qū)崝?shù)對(duì),看作點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出相應(yīng)的點(diǎn).

  (3)用光滑曲線連線.根據(jù)函數(shù)解析式比如y=3x,我們把所描的兩個(gè)點(diǎn)(0,0),(3,9)連成直線.

  一般地,根據(jù)函數(shù)解析式,我們列表、描點(diǎn)是有限的幾個(gè),只需在平面直角坐標(biāo)系中,把這有限的幾個(gè)點(diǎn)連成表示函數(shù)的曲線(或直線).

  2.講解畫(huà)函數(shù)圖象的.三個(gè)步驟和例.畫(huà)出函數(shù)y=x+0.5的圖象.

  小結(jié)

  本節(jié)課的重點(diǎn)是讓學(xué)生根據(jù)函數(shù)解析式畫(huà)函數(shù)圖象的三個(gè)步驟,自己動(dòng)手畫(huà)圖.

  練習(xí)

 、龠x用課本練習(xí)(前一節(jié)已作:列表、描點(diǎn),本節(jié)要求連線)

  ②補(bǔ)充題:畫(huà)出函數(shù)y=5x-2的圖象.

  作業(yè)

  選用課本習(xí)題.

  四、教學(xué)注意問(wèn)題

  1.注意滲透數(shù)形結(jié)合思想.通過(guò)研究函數(shù)的`圖象,對(duì)圖象所表示的一個(gè)變量隨另一個(gè)變量的變化而變化就更有形象而直觀的認(rèn)識(shí).把函數(shù)的解析式、列表、圖象三者結(jié)合起來(lái),更有利于認(rèn)識(shí)函數(shù)的本質(zhì)特征.

  2.注意充分調(diào)動(dòng)學(xué)生自己動(dòng)手畫(huà)圖的積極性.

  3.認(rèn)識(shí)到由于計(jì)算器和計(jì)算機(jī)的普及化,代替了手工繪圖功能.故在教學(xué)中要傾向培養(yǎng)學(xué)生看圖、識(shí)圖的能力.

  函數(shù)教學(xué)教案設(shè)計(jì) 16

  一、教學(xué)目的

  1.使學(xué)生初步理解二次函數(shù)的概念。

  2.使學(xué)生會(huì)用描點(diǎn)法畫(huà)二次函數(shù)y=ax2的圖象。

  3.使學(xué)生結(jié)合y=ax2的圖象初步理解拋物線及其有關(guān)的概念。

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):對(duì)二次函數(shù)概念的初步理解。

  難點(diǎn):會(huì)用描點(diǎn)法畫(huà)二次函數(shù)y=ax2的圖象。

  三、教學(xué)過(guò)程

  復(fù)習(xí)提問(wèn)

  1.在下列函數(shù)中,哪些是一次函數(shù)?哪些是正比例函數(shù)?

  (1)y=x/4;(2)y=4/x;(3)y=2x—5;(4)y=x2 — 2。

  2.什么是一無(wú)二次方程?

  3.怎樣用找點(diǎn)法畫(huà)函數(shù)的圖象?

  新課

  1.由具體問(wèn)題引出二次函數(shù)的定義。

  (1)已知圓的面積是Scm2,圓的'半徑是Rcm,寫(xiě)出空上圓的面積S與半徑R之間的函數(shù)關(guān)系式。

 。2)已知一個(gè)矩形的周長(zhǎng)是60m,一邊長(zhǎng)是Lm,寫(xiě)出這個(gè)矩形的面積S(m2)與這個(gè)矩形的一邊長(zhǎng)L之間的函數(shù)關(guān)系式。

  (3)農(nóng)機(jī)廠第一個(gè)月水泵的產(chǎn)量為50臺(tái),第三個(gè)月的產(chǎn)量y(臺(tái))與月平均增長(zhǎng)率x之間的函數(shù)關(guān)系如何表示?

  解:(1)函數(shù)解析式是S=πR2;

 。2)函數(shù)析式是S=30L—L2;

 。3)函數(shù)解析式是y=50(1+x)2,即

  y=50x2+100x+50。

  由以上三例啟發(fā)學(xué)生歸納出:

  (1)函數(shù)解析式均為整式;

 。2)處變量的最高次數(shù)是2。

  我們說(shuō)三個(gè)式子都表示的是二次函數(shù)。

  一般地,如果y=ax2+bx+c(a,b,c沒(méi)有限制而a≠0),那么y叫做x的二次函數(shù),請(qǐng)注意這里b,c沒(méi)有限制,而a≠0。

  2.畫(huà)二次函數(shù)y=x2的圖象。

  函數(shù)教學(xué)教案設(shè)計(jì) 17

  第一教時(shí)

  教材:

  角的概念的推廣

  目的:

  要求學(xué)生掌握用“旋轉(zhuǎn)”定義角的概念,并進(jìn)而理解“正角”“負(fù)角”“象限角”“終邊相同的角”的含義。

  過(guò)程:

  一、提出課題:“三角函數(shù)”

  回憶初中學(xué)過(guò)的“銳角三角函數(shù)”——它是利用直角三角形中兩邊的比值來(lái)定義的。相對(duì)于現(xiàn)在,我們研究的三角函數(shù)是“任意角的三角函數(shù)”,它對(duì)我們今后的學(xué)習(xí)和研究都起著十分重要的作用,并且在各門(mén)學(xué)科技術(shù)中都有廣泛應(yīng)用。

  二、角的概念的推廣

  1.回憶:初中是任何定義角的?(從一個(gè)點(diǎn)出發(fā)引出的兩條射線構(gòu)成的幾何圖形)這種概念的優(yōu)點(diǎn)是形象、直觀、容易理解,但它的弊端在于“狹隘”

  2.講解:“旋轉(zhuǎn)”形成角(P4)

  突出“旋轉(zhuǎn)” 注意:“頂點(diǎn)”“始邊”“終邊”

  “始邊”往往合于軸正半軸

  3.“正角”與“負(fù)角”——這是由旋轉(zhuǎn)的方向所決定的。

  記法:角 或 可以簡(jiǎn)記成

  4.由于用“旋轉(zhuǎn)”定義角之后,角的范圍大大地?cái)U(kuò)大了。

  1° 角有正負(fù)之分 如:a=210° b=-150° g=-660°

  2° 角可以任意大

  實(shí)例:體操動(dòng)作:旋轉(zhuǎn)2周(360°×2=720°) 3周(360°×3=1080°)

  3° 還有零角 一條射線,沒(méi)有旋轉(zhuǎn)

  三、關(guān)于“象限角”

  為了研究方便,我們往往在平面直角坐標(biāo)系中來(lái)討論角

  角的頂點(diǎn)合于坐標(biāo)原點(diǎn),角的始邊合于 軸的正半軸,這樣一來(lái),角的`終邊落在第幾象限,我們就說(shuō)這個(gè)角是第幾象限的角(角的終邊落在坐標(biāo)軸上,則此角不屬于任何一個(gè)象限)

  例如:30° 390° -330°是第Ⅰ象限角 300° -60°是第Ⅳ象限角

  585° 1180°是第Ⅲ象限角 -20xx°是第Ⅱ象限角等

  四、關(guān)于終邊相同的角

  1.觀察:390°,-330°角,它們的終邊都與30°角的終邊相同

  2.終邊相同的角都可以表示成一個(gè)0°到360°的角與 個(gè)周角的和

  390°=30°+360°

  -330°=30°-360° 30°=30°+0×360°

  1470°=30°+4×360°

  -1770°=30°-5×360°

  3.所有與a終邊相同的角連同a在內(nèi)可以構(gòu)成一個(gè)集合

  即:任何一個(gè)與角a終邊相同的角,都可以表示成角a與整數(shù)個(gè)周角的和

  4.例一 (P5 略)

  五、小結(jié): 1° 角的概念的推廣

  用“旋轉(zhuǎn)”定義角 角的范圍的擴(kuò)大

  2°“象限角”與“終邊相同的角”

  六、作業(yè): P7 練習(xí)1、2、3、4

  習(xí)題1.4 1

  函數(shù)教學(xué)教案設(shè)計(jì) 18

  教學(xué)目的:

  知識(shí)目標(biāo):1.理解三角函數(shù)定義. 三角函數(shù)的定義域,三角函數(shù)線.

  2.理解握各種三角函數(shù)在各象限內(nèi)的符號(hào).?

  3.理解終邊相同的角的同一三角函數(shù)值相等.

  能力目標(biāo):

  1.掌握三角函數(shù)定義. 三角函數(shù)的定義域,三角函數(shù)線.

  2.掌握各種三角函數(shù)在各象限內(nèi)的符號(hào).?

  3.掌握終邊相同的角的同一三角函數(shù)值相等.

  授課類型:復(fù)習(xí)課

  教學(xué)模式:講練結(jié)合

  教 具:多媒體、實(shí)物投影儀

  教學(xué)過(guò)程:

  一、復(fù)習(xí)引入:

  1、三角函數(shù)定義. 三角函數(shù)的定義域,三角函數(shù)線,各種三角函數(shù)在各象限內(nèi)的符號(hào).誘導(dǎo)公式第一組.

  2.確定下列各式的符號(hào)

  (1)sin100°cs240° (2)sin5+tan5

  3. .x取什么值時(shí), 有意義?

  4.若三角形的兩內(nèi)角,滿足sincs 0,則此三角形必為……( )

  A銳角三角形 B鈍角三角形 C直角三角形 D以上三種情況都可能

  5.若是第三象限角,則下列各式中不成立的是………………( )

  A:sin+cs 0 B:tansin 0

  C:csct 0 D:ctcsc 0

  6.已知是第三象限角且,問(wèn)是第幾象限角?

  二、講解新課:

  1、求下列函數(shù)的定義域:

 。1) ; (2)

  2、已知 ,則為第幾象限角?

  3、(1) 若θ在第四象限,試判斷sin(csθ)cs(sinθ)的符號(hào);

 。2)若tan(csθ)ct(sinθ)>0,試指出θ所在的象限,并用圖形表示出 的取值范圍.

  4、求證角θ為第三象限角的充分必要條件是

  證明:必要性:∵θ是第三象限角,?

  ∴

  充分性:∵sinθ<0,∴θ是第三或第四象限角或終邊在y軸的非正半軸上

  ∵tanθ>0,∴θ是第一或第三象限角.?

  ∵sinθ<0,tanθ>0都成立.?

  ∴θ為第三象限角.?

  5 求值:sin(-1320°)cs1110°+cs(-1020°)sin750°+tan495°.

  三、鞏固與練習(xí)

  1 求函數(shù) 的值域

  2 設(shè)是第二象限的.角,且 的范圍.

  四、小結(jié):

  五、課后作業(yè):

  1、利用單位圓中的三角函數(shù)線,確定下列各角的取值范圍:

  (1) sinα

  2、角α的終邊上的點(diǎn)P與A(a,b)關(guān)于x軸對(duì)稱 ,角β的終邊上的點(diǎn)Q與A關(guān)于直線=x對(duì)稱.求sinαescβ+tanαctβ+secαcscβ的值.

  函數(shù)教學(xué)教案設(shè)計(jì) 19

  一、重視每一堂復(fù)習(xí)課

  數(shù)學(xué)復(fù)習(xí)課不比新課,講的都是已經(jīng)學(xué)過(guò)的東西,我想許多老師都和我有相同的體會(huì),那就是復(fù)習(xí)課比新課難上。

  二、重視每一個(gè)學(xué)生

  學(xué)生是課堂的主體,離開(kāi)學(xué)生談?wù)n堂效率肯定是行不通的。而我校的學(xué)生數(shù)學(xué)基礎(chǔ)大多不太好,上課的積極性普遍不高,對(duì)學(xué)習(xí)的熱情也不是很高,這些都是十分現(xiàn)實(shí)的事情,既然現(xiàn)狀無(wú)法更改,那么我們只能去適應(yīng)它,這就對(duì)我們老師提出了更高的要求

  三、做好課外與學(xué)生的溝通

  學(xué)生對(duì)你教學(xué)理念認(rèn)同和教學(xué)常規(guī)配合與否,功夫往往在課外,只有在課外與學(xué)生多進(jìn)行交流和溝通,和學(xué)生建立起比較深厚的師生情誼,那么最頑皮的學(xué)生也能在他喜歡的老師的課堂上聽(tīng)進(jìn)一點(diǎn)

  四、要多了解學(xué)生

  你對(duì)學(xué)生的了解更有助于你的教學(xué),特別是在初三總復(fù)習(xí)間斷,及時(shí)了解每個(gè)學(xué)生的復(fù)習(xí)情況有助于你更好的制定復(fù)習(xí)計(jì)劃和備下一堂課,也有利于你更好的改進(jìn)教學(xué)方法。

  二次函數(shù)教學(xué)方法一

  一、立足教材,夯實(shí)雙基:

  進(jìn)行中考數(shù)學(xué)復(fù)習(xí)的時(shí)候,要立足于教材,重新梳理教材中的典例和習(xí)題,就顯得尤為重要。并且要讓學(xué)生在掌握的基礎(chǔ)上,能夠做到知識(shí)的延伸和遷移,讓解題方法、技巧在學(xué)生遇到相似問(wèn)題時(shí),能在頭腦中再現(xiàn)

  二、立足課堂,提高效率:

  做到教師入題海,學(xué)生出題海。教師應(yīng)多做題、多研究近幾年的中考試題,并根據(jù)本班學(xué)生的實(shí)際情況,從眾多復(fù)習(xí)資料中,選擇適合本班學(xué)生的最佳練習(xí),也可通過(guò)對(duì)題目的重組。

  三、教師在設(shè)計(jì)教學(xué)目標(biāo)時(shí),要做到胸中有書(shū),目中有人

  讓每一節(jié)課都給學(xué)生留有時(shí)間,讓他們有獨(dú)立思考、合作探究交流的過(guò)程,最大限度的調(diào)動(dòng)學(xué)生的參與度,激發(fā)他們的學(xué)習(xí)興趣,達(dá)到最佳的復(fù)習(xí)效果。

  四、激發(fā)興趣,提高質(zhì)量:

  興趣是學(xué)習(xí)最好的動(dòng)力,在上復(fù)習(xí)課時(shí)尤為重要。因此,我們?cè)谑谡n的過(guò)程中,在關(guān)注知識(shí)復(fù)習(xí)的同時(shí),也要關(guān)注學(xué)生的學(xué)習(xí)欲望和學(xué)習(xí)效果,要讓學(xué)生在學(xué)習(xí)的.過(guò)程中體驗(yàn)成功的快感。這樣他們才會(huì)更有興趣的學(xué)習(xí)下去。

  二次函數(shù)教學(xué)方法二

  1、質(zhì)疑問(wèn)難是學(xué)生自主學(xué)習(xí)的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學(xué)生的主體意識(shí),必須鼓勵(lì)學(xué)生質(zhì)疑問(wèn)難。教師要?jiǎng)?chuàng)造和諧融合的課堂氣氛,允許學(xué)生隨時(shí)“插嘴”、提問(wèn)、爭(zhēng)辯,甚至提出與教師不同的看法。

  2、二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學(xué)生要學(xué)習(xí)的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實(shí)世界變量之間關(guān)系的重要的數(shù)學(xué)模型。

  3、生有疑而問(wèn)、質(zhì)疑問(wèn)難,是用心思考、自主學(xué)習(xí)、主動(dòng)探究的可貴表現(xiàn),理應(yīng)得到老師的熱情鼓勵(lì)和贊揚(yáng),F(xiàn)在對(duì)學(xué)生的隨時(shí)“插嘴”,提出的各種疑難問(wèn)題,應(yīng)抱歡迎、鼓勵(lì)的態(tài)度給與肯定,并做出正確的解釋。

  4、初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀點(diǎn)審視一元二次方程,用二次函數(shù)的相關(guān)知識(shí)分析和解決簡(jiǎn)單的實(shí)際問(wèn)題。

  4二次函數(shù)教學(xué)方法三

  1、教學(xué)案例、教學(xué)設(shè)計(jì)、教學(xué)實(shí)錄、教學(xué)敘事的區(qū)別:教學(xué)案例與教案:教案(教學(xué)設(shè)計(jì))是事先設(shè)想的教育教學(xué)思路,是對(duì)準(zhǔn)備實(shí)施的教育措施的簡(jiǎn)要說(shuō)明,反映的是教學(xué)預(yù)期;而教學(xué)案例則是對(duì)已發(fā)生的教育教學(xué)過(guò)程的描述,反映的是教學(xué)結(jié)果。

  2、教學(xué)案例與教學(xué)實(shí)錄:它們同樣是對(duì)教育教學(xué)情境的描述,但教學(xué)實(shí)錄是有聞必錄(事實(shí)判斷),而教學(xué)案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價(jià)值判斷)。

  3、教學(xué)案例與敘事研究的聯(lián)系與區(qū)別:從“情景故事”的意義上講,教育敘事研究報(bào)告也是一種“教育案例”,但“教學(xué)案例”特指有典型意義的、包含疑難問(wèn)題的、多角度描述的經(jīng)過(guò)研究并加上作者反思(或自我點(diǎn)評(píng))的教學(xué)敘事;

  4、教學(xué)案例必須從教學(xué)任務(wù)分析的目標(biāo)出發(fā),有意識(shí)地選擇有關(guān)信息,必須事先進(jìn)行實(shí)地作業(yè),因此日常教育敘事日志可以作為寫(xiě)作教學(xué)案例的素材積累。

【函數(shù)教學(xué)教案設(shè)計(jì)】相關(guān)文章:

函數(shù)教學(xué)論文07-26

滲透函數(shù)思想教學(xué)策劃03-25

c語(yǔ)言函數(shù)教學(xué)ppt課件10-29

高中數(shù)學(xué)函數(shù)的教學(xué)論文08-16

正弦函數(shù)、余弦函數(shù)的圖象教案09-08

分段函數(shù)04-01

高中函數(shù)教案11-28

《函數(shù)的概念》教案06-25

關(guān)于《師說(shuō)》教學(xué)教案設(shè)計(jì)03-26