亚洲色影视在线播放_国产一区+欧美+综合_久久精品少妇视频_制服丝袜国产网站

教案

八年級反比例函數(shù)教案

時(shí)間:2022-10-07 17:31:42 教案 我要投稿
  • 相關(guān)推薦

八年級反比例函數(shù)教案

  知識(shí)技能目標(biāo)

八年級反比例函數(shù)教案

  1.理解反比例函數(shù)的圖象是雙曲線,利用描點(diǎn)法畫出反比例函數(shù)的圖象,說出它的性質(zhì);

  2.利用反比例函數(shù)的圖象解決有關(guān)問題.

  過程性目標(biāo)

  1.經(jīng)歷對反比 例函數(shù)圖象的觀察、分析、討論、概括過程,會(huì)說出它的性質(zhì);

  2.探索反比例函數(shù)的圖象的性質(zhì),體會(huì)用數(shù) 形結(jié)合思想解數(shù)學(xué)問題.

  教學(xué)過程

  一、創(chuàng)設(shè)情境

  上節(jié)的練習(xí)中,我們畫出了問題1中函數(shù) 的圖象,發(fā)現(xiàn)它并不是直線.那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù) (k是常數(shù),k0)的圖象,探究它有什么性質(zhì).

  二、探究歸納

  1.畫出函數(shù) 的圖象.

  分析 畫出函數(shù)圖象一般分 為列表、描點(diǎn)、連線三個(gè)步驟,在反比例函數(shù)中自變量x 0.

  解 1.列表:這個(gè)函數(shù)中自變量x的取值范圍是不等于零的一切實(shí)數(shù),列出x與y的對應(yīng)值:

  2.描點(diǎn):用表里各組對應(yīng)值作為點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出在京各點(diǎn)點(diǎn)(-6,-1) 、(-3,-2)、(-2,-3)等.

  3.連線:用平滑的 曲線將第一象限各點(diǎn)依次連起來,得到圖象的 第一個(gè)分支;用平滑的曲線將第三象限各點(diǎn)依次連起來,得到圖象的另一個(gè)分支.這兩個(gè)分支合起來,就是反比例函數(shù)的圖象.

  上述圖象,通常稱為雙曲線(hyperbola).

  提問 這兩條曲線會(huì)與x軸、y軸相交嗎?為什么?

  學(xué)生試一試:畫出反比例函數(shù) 的圖象(學(xué)生動(dòng)手畫反比函數(shù)圖象,進(jìn)一步掌握畫函數(shù)圖象的步驟).

  學(xué)生討論、交流以下問題,并 將討論、交流的結(jié)果回答 問題.

  1.這個(gè)函數(shù)的圖 象在哪兩個(gè)象限?和函數(shù) 的圖象 有什么不同?

  2.反比例函數(shù) (k0)的圖象在哪兩個(gè)象限內(nèi)?由什么確定?

  3.聯(lián)系一次函數(shù)的性質(zhì),你能否總結(jié)出反比例函數(shù)中隨著自變量x的增加,函數(shù)y將怎樣變化?有什么規(guī)律?

  反比例函數(shù) 有下列性質(zhì):

  (1)當(dāng)k0時(shí),函數(shù)的圖象在第一、三象限,在每個(gè)象限內(nèi),曲線從左向右下降,也就是在每個(gè)象限內(nèi)y隨x的增加而減少;

  (2)當(dāng)k0時(shí),函數(shù)的圖象在第二、四象限,在每個(gè)象限內(nèi),曲線從左向右上升,也就是在每個(gè)象限內(nèi)y隨x的增加而增加.

  注 1.雙曲線的兩個(gè)分支與x軸和y軸沒有交點(diǎn);

  2.雙曲線的兩個(gè)分支關(guān)于原點(diǎn)成中心對稱.

  以上兩點(diǎn)性質(zhì)在上堂課的問題1和問題2中反映了怎樣的實(shí)際意義?

  在問題1中反映了汽車比自行車的速 度快,小華乘汽車比騎自行車到鎮(zhèn)上的時(shí)間少.

  在問題2中反映了在面積一定的情況下,飼養(yǎng)場的一邊越長,另一邊越小.

  三、實(shí)踐應(yīng)用

  例1 若反比例函數(shù) 的圖象在第二、四象限,求m的值.

  分析 由反比例函 數(shù)的定義可知: , 又由于圖象在二、四象限,所以m+10,由這兩個(gè)條件可解出m的值.

  解 由題意, 得 解得 .

  例2 已知反比例函數(shù) (k0),當(dāng)x0時(shí),y隨x的增大而增大,求一次函數(shù)y=kx-k的圖象經(jīng)過的象限.

  分析 由于反比例函數(shù) (k0 ),當(dāng)x0時(shí),y隨x的增大而增大,因此k0,而一次函數(shù)y=kx-k中,k0,可知,圖象過二、四象限,又-k0,所以直線與y軸的交點(diǎn)在x軸的上方.

  解 因?yàn)榉幢壤瘮?shù) (k0),當(dāng)x0時(shí),y隨x的增大而增大,所以k0,所以一次函數(shù)y=kx-k的圖象經(jīng)過一、二、四象限.

  例3 已知反比例函數(shù)的圖象過點(diǎn)(1,-2).

  (1)求這個(gè)函數(shù)的解析式,并畫出圖象;

  (2)若點(diǎn)A(-5,m)在圖象上,則點(diǎn)A關(guān)于兩坐標(biāo)軸和原點(diǎn)的對稱點(diǎn)是否還在圖象上?

  分析 (1) 反比例函數(shù)的圖象過點(diǎn)(1,-2),即當(dāng)x=1時(shí),y=-2.由待定系數(shù)法可求出反比例函數(shù)解析式;再根據(jù)解析式,通過列表、描點(diǎn)、連線可畫出反比例函數(shù)的圖象;

  (2)由點(diǎn)A在反比例函數(shù)的圖象上,易求出m的值,再驗(yàn)證點(diǎn)A關(guān)于兩坐標(biāo)軸和原點(diǎn)的對稱點(diǎn)是否在圖象上.

  解 (1)設(shè):反比例函數(shù)的解析式為: (k0).

  而反比例函數(shù)的圖象過 點(diǎn)(1,-2),即當(dāng)x=1時(shí),y=-2.

  所以 ,k=-2.

  即反比例函數(shù)的解析式為: .

  (2)點(diǎn)A(-5,m)在反比例函數(shù) 圖象上,所以 ,

  點(diǎn)A的坐標(biāo)為 .

  點(diǎn)A關(guān)于x軸的對稱點(diǎn) 不在這個(gè)圖象上;

  點(diǎn)A關(guān)于y軸的對稱點(diǎn) 不在這個(gè)圖象上;

  點(diǎn)A關(guān)于原點(diǎn)的對稱點(diǎn) 在這個(gè)圖象上;

  例4 已知函數(shù) 為反比例函數(shù).

  (1)求m的值;

  (2)它的圖象在第幾象限內(nèi)?在各象限內(nèi),y隨x的增大如何變化?

  (3)當(dāng)-3 時(shí),求此函數(shù)的最大值和最小值.

  解 (1)由反比例函數(shù)的定義可知: 解得,m=-2.

  (2)因?yàn)?20,所以反比例函數(shù)的圖象在第二、四象限內(nèi),在各象限內(nèi),y隨x的增大而增大.

  (3)因?yàn)樵诘趥(gè)象限內(nèi),y隨x的增大而增大,

  所以當(dāng)x= 時(shí),y最大值= ;

  當(dāng)x=-3時(shí),y最小值= .

  所以當(dāng)-3 時(shí),此函數(shù)的最大值為8,最小值為 .

  例5 一個(gè)長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米.

  (1)寫出用高表示長的函數(shù)關(guān) 系式;

  (2)寫出自變量x的取值范圍;

  ( 3)畫出函數(shù)的圖象.

  解 (1)因?yàn)?00=5xy,所以 .

  (2)x0.

  (3)圖象如下:

  說明 由于自變量x0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內(nèi)的一個(gè)分支.

  四、交流反思

  本節(jié)課學(xué)習(xí)了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質(zhì).

  1.反比例函數(shù)的圖象是雙曲線(hyperbola).

  2.反比例函數(shù)有如下性質(zhì):

  (1)當(dāng)k0時(shí),函數(shù)的圖象在第一、三象限,在每個(gè)象限內(nèi),曲線 從左向右下降,也就是在每個(gè)象限內(nèi)y隨x的增加而減少;

  (2)當(dāng)k0時(shí),函數(shù)的圖象在第二、四象限,在每個(gè)象限內(nèi),曲線從左向右上升,也就是在每個(gè)象限內(nèi)y隨x的增加而增加.

  五、檢測反饋

  1.在同一直角坐標(biāo)系中畫出下列函數(shù)的圖象:

  (1) ; (2) .

  2.已知y是x的反比例函數(shù),且當(dāng)x=3時(shí),y=8,求:

  (1)y和x的函數(shù)關(guān)系式;

  (2)當(dāng) 時(shí),y的值;

  (3)當(dāng)x取 何值時(shí), ?

  3.若反比例函數(shù) 的圖象在所在象限內(nèi),y隨x的增大而增大,求n的值.

  4.已知反比例函數(shù) 經(jīng)過點(diǎn)A(2,-m)和B(n,2n),求:

  (1)m和n的值;

  (2)若圖象上有兩點(diǎn)P1(x1,y1)和P2( x2,y2),且x1 x2,試比較y1和 y2的大小.

【八年級反比例函數(shù)教案】相關(guān)文章:

反比例函數(shù)的教學(xué)教案10-08

反比例教案02-17

《二次函數(shù)》教案10-13

函數(shù)奇偶性教案02-15

函數(shù)數(shù)學(xué)教案07-22

《一次函數(shù)》數(shù)學(xué)教學(xué)教案10-09

函數(shù)教學(xué)教案設(shè)計(jì)(通用9篇)10-26

一次函數(shù)的圖象教案11-23

《對數(shù)函數(shù)》高一數(shù)學(xué)教案10-08

三角函數(shù)的應(yīng)用數(shù)學(xué)教案10-09