方程的意義的教案
作為一名默默奉獻(xiàn)的教育工作者,通常需要用到教案來輔助教學(xué),教案有助于順利而有效地開展教學(xué)活動。那么問題來了,教案應(yīng)該怎么寫?下面是小編收集整理的方程的意義的教案,僅供參考,大家一起來看看吧。
方程的意義的教案1
教學(xué)內(nèi)容:方程的意義和解簡易方程(教材第105一107頁,練習(xí)二十六)。
教學(xué)要求:
1.使學(xué)生理解和掌握等式及方程、方程的解和解方程的意義,以及等式與方程,方程的解與解方程之間的聯(lián)系和區(qū)別。
2.使學(xué)生理解并掌握解方程的依據(jù)、步驟和書寫格式,培養(yǎng)良好的解題習(xí)慣。
教 具:
教學(xué)天平、小黑板。
學(xué) 具:
自制的簡易天平、定量方塊。
教學(xué)步驟:
一、復(fù)習(xí)
1.根據(jù)加法與減法,乘法與除法的關(guān)系說出求下面各數(shù)的方法。
。1)一個加數(shù)=( )○( )
。2)被減數(shù)=( )○( )
。3)減數(shù)=( )○( )
。4)一個因數(shù)=( )○( )
。5)被除數(shù)=( )○( )
。6)除數(shù)=( )○( )
2.求未知數(shù)X(并說說求下面各題X的依據(jù))。
。1)20十X=100 (2)3X=69
。3)17—X=0.6 (4)x÷5=1.5
二、新授
1.理解和掌握“方程的意義”。
。1)出示天平,介紹使用方法(演示)后,設(shè)問:
在天平兩邊放物體,在什么情況下才能使天平保持平衡?
(兩邊的物體同樣重時,天平才能保持平衡。)
。2)演示:在左邊放兩個重物各20克和30克,右邊砝碼也是50克,讓學(xué)生觀察,天平是平衡的。說明了什么?怎樣用式子表示?
板書:20十30=50
指出:表示左右兩邊相等的式子叫等式。
。ú鍟┑仁剑罕硎镜忍杻蛇厓蓚式子的相等關(guān)系,即等式是表示相等關(guān)系的式子。
。3)教學(xué)例2(課本105頁)。
、俳處熇^續(xù)演示,調(diào)整,在左盤放一20克的重物和一個未知重量的方塊,右盤里放一個100克重的磚碼。(如教材105頁第二幅圖)讓學(xué)生觀察天平是否平衡(指針正好指在刻度線中央,天平是平衡的),那么也就說明了這個天平左右兩邊的`物體的重量相等。怎樣用等式表示出來呢?
板書:20+?=100
、诘仁健20+?=100”中的?是未知數(shù),通常我們用“X”來表示,那么上面的等式可寫成 (板書)20十X=100
、郾容^:等式“20+X=100”與等式“20+30=50”有什么不同?(含有未知數(shù))教師指出,“20+X=100”是含有未知數(shù)的等式。
、芟胍幌耄篨等于多少,才能使等式“20+X=100”左右兩邊相等?(未知方塊重80克時才能使天平兩邊的重量相等,即X=30)
。4)教學(xué)例3(課本106頁)。
出示教材第106頁上面的例圖的放大圖,并根據(jù)圖意寫出等式。設(shè)問:
、賵D中每個籃球的價錢是X元,3個籃球的總價是多少元?(3x)
、谝缊D示(看圖)表明3個籃球的總價(3x)是多少元?(234元)它們之間的關(guān)系可以用一個怎樣的等式表示出來?
。ò鍟3X=234
、圻@個等式有什么特點?(含有未知數(shù))當(dāng)X等于多少時,這個等式等號左右兩邊正好相等?(X=78)
。5)方程的意義:
綜合觀察以上三個等式,想一想,它們之間有什么聯(lián)系,有什么區(qū)別:
20+30=50……一般的等式
20+X=200 含有未知數(shù)的等式
3X=234 稱之為方程
。ò鍟┫20+x=100 3X=234 X—10=35 X÷12=5等,含有未知數(shù)的等式叫做方程。
①根據(jù)方程的含義,方程應(yīng)該具備哪些條件,(一要是等式,二要含有未知數(shù),二者缺一不可。)
、诜匠膛c等式之間是什么關(guān)系?(是方程就一定是等式,但是等式不一定是方程,也就是說方程是等式的一部分,小學(xué)數(shù)學(xué)教案《數(shù)學(xué)教案-方程的意義和解簡易方程》。)
。6)練一練(指名學(xué)生判斷,并說明理由)教材第106頁“做一做”。
2.學(xué)習(xí)“解簡易方程”。
。╥)理解和掌握方程的解和解方程的含義。設(shè)問:①看教材第107頁,什么叫做方程的解?什么叫解方程?
。ò鍟┦狗匠套笥覂蛇呄嗟鹊奈粗獢(shù)的值,叫做方程的解。
例如:X=80是方程20+X=100的解;
X=78是方程3X=234的解。
。ò鍟┣蠓匠痰慕獾倪^程叫做解方程。
、诜匠痰慕夂徒夥匠逃惺裁绰(lián)系和區(qū)別?
方程的解是指未知數(shù)的值等于多少時能使等式左右兩邊相等;而解方程是指求出這個未知數(shù)的值的過程。因此方程的解是解方程過程中的一部分。它們既有聯(lián)系,又有區(qū)別。
。2)教學(xué)例1:
解方程X一8=16
①教師指出:我們以前做過一些求未知數(shù)X的題目,實際上就是解方程,以前怎么解,現(xiàn)在仍然怎么解,只是在格式要求方面增加了新的內(nèi)容。
、谝龑(dǎo)學(xué)生說出自己的推想過程:題中的未知數(shù)X相當(dāng)于什么數(shù)?(被減數(shù))怎么求被減數(shù)?(減數(shù)十差)
。ò鍟┙夥匠蘕一8=16
解::根據(jù)被減數(shù)等于減數(shù)加差;
X=16十8(與原來學(xué)過的求X的思路相同)
X=24
檢驗:把X=24代人原方程
左邊=24一8=16,右邊=16
左邊=右邊
所以X=24是原方程的解。
總結(jié)有關(guān)的格式要求:
①做題時要先寫上“解”字。
、诟餍械牡忍栆獙R,并且不能連等。
、鄯娇蚶锏倪\(yùn)算根據(jù)可以不寫。
④驗算以“檢驗”的形式出示,有固定的格式。解方程時,除了要求寫檢驗以外,都要口算進(jìn)行檢驗,防止走過場。
指導(dǎo)學(xué)生看教材第105一107頁。
三、鞏固
1.教材107頁“做一做”。
2,教材第108頁練習(xí)二十六第1、2題。
四、練習(xí)
教材第108頁,練習(xí)二十六第3~5題。
作業(yè)輔導(dǎo)
1.判斷題。
(1)含有未知數(shù)的式子叫方程。 ( )
。2)方程是等式,所以等式也叫方程。 ( )
。3)檢驗方程的解,應(yīng)當(dāng)把求得的解代人原方程。()
。4)36是方程X÷3=12的解。 ( )
2.把下面的各關(guān)系式寫完整。
(1)一個加數(shù)=( )○( )
。2)被減數(shù)=( )○( )
(3)減數(shù)=( )○( )
。4)一個因數(shù)=( )○( )
。5)除數(shù)=( )○( )
。6)被除數(shù)=( )○( )
3.解下列方程。(第一行兩小題要寫出檢驗過程)
10—X=0.42 4.5X=27 X十5.8=16.4
X÷28=76 2÷X=0.5 X—8.75=4.65
板書設(shè)計:
解簡易方程
例1 解方程X-8=16
方程的意義的教案2
一、教學(xué)目標(biāo):
1、初步理解方程的意義,會判斷一個式子是不是方程。
2、會按要求用方程表示出數(shù)量關(guān)系。
3、培養(yǎng)學(xué)生觀察、分析、比較、概括及創(chuàng)新的能力。
二、重點:會用方程的意義去判斷一個式子是不是方程。
三、難點:依據(jù)多種不同的標(biāo)準(zhǔn)對式子進(jìn)行不同的分類。
四、教具準(zhǔn)備:天平、禮物(100克)、水杯(40克)、多媒體課件
五、教學(xué)過程:
1、簡介天平、導(dǎo)入新課:
展示從古埃及到現(xiàn)代的各式天平圖,簡介天平的歷史。
教師稱量100克物體(禮物)的重量,學(xué)生觀察。(學(xué)生未使用過天平)
2、分組實踐、寫出式子:
學(xué)生實踐的任務(wù)是:稱量禮物+水杯的重量(共140克)。
同學(xué)們能用字母來表示一下水杯的'重量嗎?(x,y,m)
同學(xué)們能用含有字母的式子來表示禮物和水杯的總重量嗎?(禮物重量已知100克)(100+x,100+y,100+m)
第一次試稱量:放一個50克的砝碼,物體的重量和砝碼表示的重量有怎樣的關(guān)系?能用式子表示下來嗎?(得到式子100+x150);
第二次試稱量:取出50克砝碼,放入20克砝碼,物體的重量和砝碼表示的重量有怎樣的關(guān)系?(得到式子:100+x120);
第三次稱量:再放入一個20克的砝碼,得到天平平衡,這時物體的重量和砝碼表示的重量有怎樣的關(guān)系?(得到式子:100+x=140)。
3、自主探索、合作交流:
老師這里也有這樣的一些式子:
35+65=100x-1472y+24
5x+32=472816+146(a+2)=42
同學(xué)們自己先分一分,看有幾種不同的分法,然后以小組為單位,互相交流,并整理。
4、展示結(jié)果、得出結(jié)論:
以小組為單位實物投影展示分類情況。
其中一組分類情況:35+65=100,x-1472,y+24,2816+14分為一組,5x+32=47,6(a+2)=42分為一組。
若學(xué)生們未分出這種分類情況,應(yīng)該肯定分出:x-1472,y+24,2816+14為一組,35+65=100,5x+32=47,6(a+2)=42為一組這種分法。此時可以引導(dǎo):第二組還可以再分類嗎?還可以分為哪兩類?學(xué)生就會分得5x+32=47,6(a+2)=42在一組,根據(jù)其特點:既是等式,又含有未知數(shù),引出方程的意義:含有未知數(shù)的等式是方程。
5、鞏固練習(xí)、擴(kuò)展延伸:
基礎(chǔ)練習(xí):
你能寫出二個方程嗎?
老師這里有一些式子,你們能判斷哪些是方程嗎?并說明理由。
擴(kuò)展提高:
判斷下面的式子哪些是等式,哪些是方程。同學(xué)們發(fā)現(xiàn)了什么?
同學(xué)們能用圖示來表示一下方程和等式的關(guān)系嗎?小組探究。
教師引導(dǎo):所有方程都是等式,方程是等式的一種(必須含有未知數(shù))。
出示一些簡單數(shù)學(xué)情境,找出等量關(guān)系并列出方程。如:三個球一共20.3元。兩個部分一部分是5.2,另一部分是x,全部是6.5。
6、課堂總結(jié):
同學(xué)們今天認(rèn)識了方程,誰能說一說你對她的了解。讀《小知識》,了解方程的歷史。
方程的意義的教案3
教學(xué)內(nèi)容:
教科書第1-2頁例1、例2。
教學(xué)目標(biāo):
1、通過學(xué)習(xí),使學(xué)生理解方程的含義,知道像X+50=150、2X=200這樣含有未知數(shù)的等式是方程。
2、培養(yǎng)學(xué)生概括、歸納的能力。
教學(xué)準(zhǔn)備:
天平、砝碼。
教學(xué)重點及難點:
理解方程的意義,方程與等式的關(guān)系。
教學(xué)過程:
一、借助天平體會等式的含義。
。1)你會用等式表示天平兩邊物體的質(zhì)量關(guān)系嗎?(50+50=100 50×2=100)
(2)你還能寫出這樣的等式嗎?根據(jù)學(xué)生舉例寫下2~3個。
(3)你感覺什么樣的式子是等式呢?
用等于號連接的數(shù)學(xué)表達(dá)式;左右兩邊相等的式子;左邊算起來來等于右邊的';
二、感知不等式,教學(xué)方程的意義。
1、出示實物天平:
。1)左邊放克,右邊放克,可以用什么式子來表示?
板書:
。2)現(xiàn)在老師要在左邊再放一個物體,左邊的質(zhì)量怎樣來表示呢?(+x)
。3)這時候,你覺得天平會發(fā)生什么變化呢?你能把這些可能寫下來嗎?
交流并板書+x< +x= +x>
(4)這些式子與等式相比有什么不同?(有字母,有的不是等式。用大于號或者小于號連接,我們把這些叫不等式。)。
2、例二的內(nèi)容
。1)學(xué)生在作業(yè)紙上完成例二的內(nèi)容。集體交流匯報。板書
x+5>100 x+50=150 x+50<200 2×x=200
(2)概括概念
A、觀察黑板上的算式,你能把他們分分類嗎?
B、你分類的依據(jù)是什么?
第一次分類:按照等式、不等式分
。ɡ蠋煱押诎迳喜皇堑仁降氖阶硬恋簦┦O碌氖阶邮鞘裁?(都是等式)
還能再分下去嗎?
第二次分類:按既含有字母且是等式分
。ù颂幰部赡芟劝从凶帜负蜎]有字母來分,然后再按等式和不等式來分)
C、像x+50=150、2x=200這樣含有未知數(shù)的等式叫做方程。(板書:方程)
像50+50=100、x+50>100和x+50<200為什么這些不是方程呢?把板書補(bǔ)充完整。
D、完成試一試
三、突出方程概念的內(nèi)涵與外延
1、討論判斷
。1):哪些是等式,哪些是方程?
6+x=14 36-7=2960+23>708+x y-28=35
x+4〈14 m+n=100
。2)在判斷之后,你對等式和方程有什么新的認(rèn)識呢?
可能有:未知數(shù)可以用x、y等多個字母表示;
一個等式中可以含有多個未知數(shù);
等式與方程這兩個概念之間的包含與被包含關(guān)系。即方程都是等式,但等式不都是方程。(如果學(xué)生說不到或者不明白就出現(xiàn)以下的比較辨析。)
(3)討論比較,辨析概念。
討論下面的說法正確嗎?
所有的方程都是等式。
所有的等式都是方程。
。4)剛才我們是用語言描述的方式表示出了方程和等式的關(guān)系,你還有什么更清楚簡明的辦法來表示它們之間的關(guān)系嗎?
。5)你能自己創(chuàng)造一到兩個和現(xiàn)實生活有聯(lián)系的方程的例子嗎?能夠?qū)⒆约簞?chuàng)造出來的方程與鄰座的同學(xué)分享討論,集體分享。(不會,老師先舉個例子。)
。6)引導(dǎo)質(zhì)疑你還有什么疑問?
四、用方程表示直觀情境里的相等關(guān)系
(1)看圖列方程
。2)用方程表示下面的數(shù)量關(guān)系。
。3)列式:媽媽買米用了50元,買油用了15元,媽媽一共用了多少錢?
。ㄕf明:并不是任何時候都要列方程的。)
五、總結(jié)提升,介紹方程的數(shù)學(xué)史
板書設(shè)計:方程的意義
X+50=100
X+X=100
像X+50=150、2X=200這樣含有未知數(shù)的等式是方程。
教學(xué)后記:
方程的意義的教案4
教學(xué)內(nèi)容: 教科書第1~2頁的內(nèi)容及練習(xí)一的1~3題。
教學(xué)目標(biāo):1、通過學(xué)習(xí),使學(xué)生理解方程的含義,感受方程思想。知道像X+50=150、2X=200這樣含有未知數(shù)的等式是方程。
2、經(jīng)歷從生活情景到方程模型的建構(gòu)過程。
3、培養(yǎng)學(xué)生觀察、描述、分類、抽象、概括、應(yīng)用等能力。
教學(xué)重點:使學(xué)生理解方程的含義,感受方程思想
教學(xué)難點:使學(xué)生理解方程的含義,感受方程思想
課前準(zhǔn)備:天平、砝碼
教學(xué)過程:
一、創(chuàng)設(shè)情景,抽象數(shù)學(xué)模式。
1.出示實物天平。
師:認(rèn)識嗎?它在生活中有什么作用?(稱物體的重量、使得左右平衡)
2.演示:
出示兩個50g砝碼和一個100g砝碼,(將未標(biāo)有重量的一邊朝向?qū)W生)
師:它們的重量我們還不知道,如果要分別放在兩個盤上,天平會怎樣呢?(演示)
學(xué)生觀察后發(fā)現(xiàn)天平平衡(這時,將砝碼標(biāo)有重量的一邊朝向?qū)W生)
提出要求:你能用等式表示天平兩邊物體的質(zhì)量關(guān)系嗎?
學(xué)生在本子上寫。
指名回答,板書:50+50=100
3、出示例1
說明:含有等號的式子叫等式,它表示等號兩邊的結(jié)果是相等的。
(板書:含有等號的式子叫等式)
二、引導(dǎo)分類,概括方程概念。
1、學(xué)生自學(xué)
要求:
。1)學(xué)生在書上獨立填寫,用式子表示天平兩邊的質(zhì)量關(guān)系。
。2)小組同學(xué)交流四道算式,最后達(dá)成統(tǒng)一認(rèn)識:
X+50>100 X+50=100
X+50<100 X+X=100
根據(jù)學(xué)生的回答,教師板書這4道算式。
(3)把這4道算式分成兩類,可以怎樣分,先獨立思考后再小組內(nèi)交流,要說出理由。
A、想一想你分類的標(biāo)準(zhǔn)是什么?
B、把自己分類的情況,寫在紙上?
學(xué)生可能會這樣分:
第一種:
X+50>100 X+50=100
X+50<100 X+X=100
第二種:
X+50>100 X+X=100
X+50<100
X+50=100
2、概括概念
過渡:看來同學(xué)們都能按自己的標(biāo)準(zhǔn)對式子進(jìn)行分類。
引導(dǎo)學(xué)生理解第一種分法:
你為什么這樣分,說說你的想法。
A、教師指著黑板說:像右邊的'式子就是我們今天所要學(xué)習(xí)的方程。(板書:像X+50=150、2X=200這樣_____________的等式方程)
B、你能說說什么叫方程嗎?
C、學(xué)生發(fā)言,概括出:“含有未知數(shù)的等式叫做方程”(板書)
提問:你覺得這句話里哪兩個詞比較重要?“含有未知數(shù)”“等式”
那X+50>100 、X+50<100為什么不是方程呢?
提問:那等式和方程有什么關(guān)系呢,在小組里交流。
方程一定是等式,但等式不一定是方程。
3、舉例方程、理解概念
你能例舉出方程嗎?誰能舉的與剛才不一樣嗎? (用字母Y表示、有難度的方程)
以前我們見過方程嗎?
三、完成“試一試”、“練一練”
1、“試一試”
。1)觀察左邊的天平圖,說說圖中的是數(shù)量關(guān)系,列出方程。
(2)觀察右邊的圖,弄清題意,列出方程。
1、練一練第1題
。1)觀察,找一找哪些是等式,哪些是方程?
。2)交流:
。3)說明:方程中的未知數(shù)可以用X表示,也可以用Y表示,還可以用其他字母表示。
(4)判斷:方程是含有未知數(shù)X的等式!..( )
2、練一練第2題
。1)先寫一些方程
(2)組織交流
3、練一練第3題
四、課堂作業(yè):
1、練習(xí)一第1題 先獨立完成在交流
2、練習(xí)一第2題
。1)先說一說每題的數(shù)量關(guān)系
。2)獨立列出方程
(3)交流
3、練習(xí)一第3題
(1)說一說天平兩邊有什么物體,這些物體的質(zhì)量間有什么關(guān)系
。2)獨立思考列出方程
。3)觀察方程,初步感知等式的性質(zhì)。
習(xí)題超市:
1、討論判斷:下面的式子哪些是方程,哪些不是方程?
8x=0 6x+2 4+2>10 2y÷5=10 n-5m = 15
17-8 = 9 10<3m 6x +3 = 11+2x 4+3z =10 a÷8=60
2、根據(jù)下面的信息,你能列處幾個不同的方程?
我比莉莉重25 kg,,我重61 kg。
我186 cm。
我身高x cm,我比爸爸矮40cm。
我重y kg。
板書設(shè)計及課后反思:
方程的意義
含有等號的式子叫等式
X+50=100
X+X=100 像X+50=150、2X=200這樣含有未知數(shù)的等式是方程。
教材簡析:
等式是方程的生長點,學(xué)生在前幾冊教材里對等式已經(jīng)有了初步的認(rèn)識,為了有利于方程概念的建立,本單元教材首先讓學(xué)生體會等式的含義。
天平兩臂平衡,表示兩邊的物體質(zhì)量相等;兩臂不平衡,表示兩邊物體的質(zhì)量不相等。讓學(xué)生在天平平衡的直觀情境中體會等式,符合學(xué)生的認(rèn)知特點。例1在天平圖下方呈現(xiàn)“=”,讓學(xué)生用等式表達(dá)天平兩邊物體質(zhì)量的相等關(guān)系,從中體會等式的含義。教材使用了“質(zhì)量”這個詞,是因為天平與其他的秤不同。習(xí)慣上秤計量物體有多重,天平計量物體的質(zhì)量是多少。教學(xué)時不要把質(zhì)量說成重量,但不必作過多的解釋。
例2繼續(xù)教學(xué)等式,教材的安排有三個特點:
第一,有些天平的兩臂平衡,有些天平兩臂不平衡。根據(jù)各個天平的狀態(tài),有時寫出的是等式,有時寫出的不是等式。學(xué)生在相等與不等的比較與感受中,能進(jìn)一步體會等式的含義。第二,寫出的四個式子里都含有未知數(shù),有兩個是含有未知數(shù)的等式。這便于學(xué)生初步感知方程,為教學(xué)方程的意義積累了具體的素材。第三,寫四個式子時,對學(xué)生的要求由扶到放。圓圈里的關(guān)系符號都要學(xué)生填寫,學(xué)生在選擇“=”“>”或“<”時,能深刻體會符號兩邊相等與不相等的關(guān)系;符號兩邊的式子與數(shù)則逐漸放手讓學(xué)生填寫,這是因為他們以前沒有寫過含有未知數(shù)的等式與不等式。
第2頁的“試一試”和“練一練”第3題都是看圖列方程,編排這些題的目的是培養(yǎng)學(xué)生發(fā)現(xiàn)和理解現(xiàn)實情境里的等量關(guān)系的能力,體會方程是表示等量關(guān)系的數(shù)學(xué)方法,從而進(jìn)一步鞏固方程的概念,并為以后列方程解決實際問題打下扎實的基礎(chǔ)。這些內(nèi)容在編排上有兩個特點:
一是直觀情境的呈現(xiàn)從天平圖開始,發(fā)展到帶括線的圖畫。帶括線的圖畫在一年級(上冊)就出現(xiàn)了,學(xué)生比較熟悉。但是,從列算式求答案的習(xí)慣思維轉(zhuǎn)向列方程表示等量關(guān)系,仍然會有困難。因此,教材先讓學(xué)生看天平圖列方程。天平兩臂平衡,表示它左右兩邊物體的質(zhì)量相等,已經(jīng)在兩道例題里教學(xué)得很充分了,看天平圖列方程能讓學(xué)生初步知道什么是列方程和怎樣列方程,對依據(jù)什么列方程和列出的方程表示什么有所體驗。
在此基礎(chǔ)上,過渡到列方程表示帶括線的圖畫里的等量關(guān)系,會平穩(wěn)得多。二是帶括線的圖畫里的等量關(guān)系,突出兩個或幾個部分?jǐn)?shù)相加是它們的總數(shù)。在幾個部分?jǐn)?shù)相同時,它們相加用乘法比較簡便。這些關(guān)系是數(shù)量之間最基本的關(guān)系。而且這些關(guān)系建立在加法和乘法的意義上,學(xué)生容易理解。如文具盒的價錢加筆記本的價錢一共20元,買4本同樣的故事書一共要16.8元,列出的方程分別是12+x=20和4x=16.8。如果少數(shù)學(xué)生列出的方程是20-x=12或16.8÷x=4也是可以的,但不宜提倡;絕不能列出20-12=x、16.8÷4=x這樣的方程。因為后者仍然是過去列算式的思路,不利于學(xué)生體會數(shù)量間的相等關(guān)系,對以后的教學(xué)也是有弊無利的。
方程的意義的教案5
教學(xué)內(nèi)容:人教版小學(xué)數(shù)學(xué)五年級上冊第53~54頁內(nèi)容,方程的意義教學(xué)設(shè)計。
教學(xué)目標(biāo):
1、理解和掌握方程的意義,弄清楚方程和等式兩個概念的關(guān)系。
2、培養(yǎng)學(xué)生認(rèn)真的觀察、思考分析問題的能力。
3、通過自主的探究、合作交流等教學(xué)活動,激發(fā)學(xué)生的興趣,培養(yǎng)合作意識。
教學(xué)重點:理解和掌握方程的意義。
教學(xué)難點:弄清方程和等式的.異同。
教學(xué)過程:
一、創(chuàng)設(shè)情境,生成問題
。1)出示ppt顯示曹沖稱象的畫面引導(dǎo)同學(xué)們自己思考怎么把大象的重量稱出來
小組之間討論并得出結(jié)論全班集體訂正。繼而引出相等,平衡的概念。
。2)課件出示天平,讓學(xué)生說說天平的特點。師概括總結(jié)得出天平的平衡這一特點。
師;怎樣才能使天平左右兩邊相等?
出示一架天平的左邊是有物體20克和30克,右邊是50克
師:用算式怎么表示?
生:20+30=50
引導(dǎo)總結(jié)得出這個一個等式。
二、探索交流,解決問題再出示天平左邊是20克的物體和?克的物體,右邊是100克的物體,教案《方程的意義教學(xué)設(shè)計》。
師:“?”表示什么?我們可以用什么表示?
生:用字母表示。
生1:20+x=100
生2:100-x=20
生3:100-20=x
師:你認(rèn)為用哪個式子更能表示天平的作用兩邊是平衡的?
引導(dǎo)得出:20+x=100表示天平左右兩邊是平衡的
出示6架天平,根據(jù)天平的平衡狀態(tài)寫算式。
把這8個算式標(biāo)號,得練習(xí):
、20+30=50 ⑤ 80
②20+χ=100 ⑥ 3χ=180
、50×2=100 ⑦100+20
④50+2χ>180 ⑧100+2χ=3×50
思考:你能給這些式子分類嗎?并說說是按照什么標(biāo)準(zhǔn)分類的。
同桌合作交流匯報
等式 不等式
、20+30=50 ④50+2χ>180
②20+χ=100 ⑤ 80
、50×2=100 ⑦100+20
⑥ 3χ=180
、100+2χ=3×50
含有未知數(shù)的式子 不含未知數(shù)的式子
、20+χ=100 ①20+30=50
④50+2χ>180 ③50×2=100
、 80
、 3χ=180
、100+2χ=3×50
師:既是等式,又含有未知數(shù)的的式子有哪幾個?
生:②20+χ=100
⑥ 3χ=180
、100+2χ=3×50
像這種含有未知數(shù)的等式我們今天給它起個新的名字,稱為“方程”
三、鞏固應(yīng)用,內(nèi)化提高
練習(xí):下面哪些是方程?哪些不是方程?
① 35-χ =12 ( ) ⑥ 0.49÷χ =7 ( )
、 Y+24 ( ) ⑦ 35+65=100 ( )
、 5 χ+32=47 ( ) ⑧χ-14>72 ( )
、 28<16+14( ) ⑨9b-3=60 ( )
、 6(a+2)=42 ( ) ⑩ χ +y=70 ( )
張強(qiáng)也列了兩了式子,不小心被墨水弄臟了。猜猜他原來列的是不是方程?
。1)6X + ( =78
(2)36 + ( ) =42
四、回顧整理,反思提升通過這一節(jié)課的學(xué)習(xí),你有哪些收獲?
方程的意義的教案6
設(shè)計說明
1、引導(dǎo)學(xué)生邊觀察、邊思考,提高自主學(xué)習(xí)能力。
《數(shù)學(xué)課程標(biāo)準(zhǔn)》中指出:數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有知識經(jīng)驗的基礎(chǔ)上。本教學(xué)設(shè)計沒有將等式、方程的概念強(qiáng)加給學(xué)生,而是充分尊重學(xué)生的原有知識水平,結(jié)合具體情境,運(yùn)用天平保持平衡的原理來解釋各數(shù)量之間的相等關(guān)系,按照教材上的連環(huán)畫,通過教師反復(fù)操作,一步一步觀察,思考每一步驟的數(shù)學(xué)含義,讓學(xué)生逐步理解式子中的“=”就是天平的平衡,從而讓學(xué)生初步體驗和感受方程的意義! 2。引導(dǎo)學(xué)生辨方程、寫方程,重視學(xué)情反饋。
數(shù)學(xué)學(xué)習(xí)重要的`是鞏固和應(yīng)用,因此學(xué)習(xí)后的學(xué)情反饋是很重要的。本設(shè)計在學(xué)生明確方程的概念后,引導(dǎo)學(xué)生自己寫方程,識別方程并說出理由的練習(xí),進(jìn)一步掌握方程的意義,明確判斷一個式子是不是方程的兩個要素:一看是不是等式,二看有沒有未知數(shù)。通過應(yīng)用反饋,加深對方程特點的理解,提高了學(xué)習(xí)效率。
課前準(zhǔn)備
教師準(zhǔn)備:PPT課件、學(xué)情檢測卡、課堂活動卡
學(xué)生準(zhǔn)備:小黑板、練習(xí)卡片
教學(xué)過程
情境引入,體會“等”與“不等”
師:同學(xué)們,我們學(xué)校一年一度的足球比賽又如火如荼地開始了,昨天的比賽是五(1)班對戰(zhàn)五(3)班,由于上半場五(3)班發(fā)揮出色,上半場的比分為1∶4,中場休息后,五(1)班馬上調(diào)整了戰(zhàn)術(shù),下半場五(3)班沒得分,五(1)班連追了x分。
師:兩個班最后的比分是幾比幾?(學(xué)生回答,教師板書:x+1∶4)
師:哪個班贏了?你能用一個數(shù)學(xué)式子來表示嗎?
。▽W(xué)生回答:x+1>4,x+1<4,x+1=4;并注意提問式子的意義)
師:其實在我們的生活中有許多現(xiàn)象是可以用數(shù)學(xué)式子來表示的。今天我們就來一起學(xué)習(xí)一個新的數(shù)學(xué)知識。(教師板書課題:方程的意義)
設(shè)計意圖:用學(xué)生經(jīng)歷的真實活動為情境,充分調(diào)動學(xué)生的學(xué)習(xí)積極性,使學(xué)生切實感受到數(shù)學(xué)來源于生活,服務(wù)于生活。同時通過熟悉情境的創(chuàng)設(shè),讓學(xué)生更易理解,更深刻地感受“等”與“不等”,為后面理解方程的意義作鋪墊。
情境呈現(xiàn),抽象模型
1、自學(xué)方程的意義,初步感悟新知。(課件出示教材62頁情境圖)
自學(xué)提示:
。1)理解教材62頁每幅圖畫及對應(yīng)式子的含義。
。2)標(biāo)示出你認(rèn)為重要的內(nèi)容。
。3)思考:方程應(yīng)該具備哪幾個條件?
。4)結(jié)合你對方程概念的理解,完成教材63頁“做一做”1題。
2、合作學(xué)習(xí)。
。1)你能自己寫幾個方程嗎?小組內(nèi)互相訂正。
。2)組內(nèi)交流收獲。在小組內(nèi)互相說一說:你學(xué)到了什么?
由組長帶領(lǐng)組內(nèi)成員集體訂正教材63頁“做一做”1題的答案,說清理由,并將小組內(nèi)認(rèn)為不是方程的算式記錄在小黑板上。
(3)全班交流。教師展示學(xué)生的完成情況,先把答案相同的進(jìn)行分類,再從答案最少的一塊著手分析。遇到問題,學(xué)生之間互相解答,加深對方程的意義的理解。
。ù谁h(huán)節(jié)教師要隨機(jī)應(yīng)變,注意提問學(xué)生“方程應(yīng)該具備哪幾個條件”。如果出現(xiàn)了對方程理解有困難的同學(xué),再次為學(xué)生講解)
預(yù)設(shè):
、偃嗤瑢W(xué)的答案一致,全對。
、谝徊糠中〗M全對,一部分小組有錯誤。
這時教師可以先找有錯誤的一個小組到黑板上匯報講解。講解時隨時和下面的同學(xué)互動交流,在學(xué)生的爭論中,教師適時引導(dǎo)、提問,指導(dǎo)學(xué)生判斷正誤的方法。
3、整理分類,加深對方程意義的理解。
(1)組織學(xué)生分組活動,根據(jù)黑板上的算式特點進(jìn)行分類。
。2)交流匯報,說出分類依據(jù)。教師板書。
4、獨立完成教材63頁“做一做”2題,匯報,集體訂正。
5、引導(dǎo)學(xué)生獨立完成教材66頁1題,集體訂正,并加以補(bǔ)充:判斷0=5z-15是不是方程。
方程的意義的教案7
教學(xué)理念:讓學(xué)生在廣泛的探究時空中,在明主平等、輕松愉悅的氛圍里,應(yīng)用已有知識經(jīng)驗,通過自主預(yù)習(xí)、質(zhì)疑問難、釋疑解惑、合作交流,理解并掌握方程的意義,知道等式和方程、方程的解與解方程之間的關(guān)系,并能進(jìn)行辨析,學(xué)會用方程表示簡單情境中的等量關(guān)系,提高觀察能力、分析能力和解決實際問題的能力。初步建立分類的思想,進(jìn)一步感受數(shù)學(xué)與生活之間的密切聯(lián)系。
教學(xué)目標(biāo):
1、借助天平明白等式的含義,并在分類的基礎(chǔ)上充分感受、認(rèn)識什么是方程。
2、會用方程表示數(shù)量關(guān)系。
3、培養(yǎng)學(xué)生觀察、描述、分類、抽象、概括、應(yīng)用等能力。
4、感受方程與現(xiàn)實生活的密切聯(lián)系,體驗數(shù)學(xué)活動的探索性。
重點:理解方程是含有未知數(shù)的等式;
難點:方程的意義抽象的過程。
課前談話:滲透平衡和等量(談體驗)
教學(xué)過程:
一、激情導(dǎo)入:
出示天平,(見過天平嗎?在那里見過?有什么作用。浚└鶕(jù)天平的狀態(tài)列出不同的式子,(不平衡讓學(xué)生想辦法得出讓天平兩邊平衡)。
二、探究新知:
1.對不同的式子進(jìn)行分類(不要有任何要求)
讓學(xué)生先獨立思考,然后小組合作交流自己的想法。
2.小組匯報分類的想法。小組之間在傾聽的過程中逐漸完善自己本組的想法。
讓小組的代表說說自己組是怎樣分類的?為什么這樣分類?
3.教師根據(jù)各小組的分類進(jìn)行小結(jié):像這樣的用等號連接左右兩邊的叫做等式。像這樣的這一類叫方程。板書課題。(在學(xué)生分類的基礎(chǔ)上)
4.小組探究什么是方程?(先觀察式子,獨立思考,后小組交流)
5.小組匯報各組的'想法。在各組傾聽的基礎(chǔ)上逐漸完善自己的想法。
6.教師在學(xué)生小組匯報的基礎(chǔ)上進(jìn)行小結(jié):像這樣,含有未知數(shù)的等式叫方程。
7.生舉例。
8、師舉例,讓學(xué)生說哪些是方程哪些不是方程,并說明理由。
9、通過剛才的幾道算式,讓學(xué)生說說對方程又有了哪些新的認(rèn)識?
10、判斷兩句話:所有的方程都是等式,所有的等式都是方程。
11、畫圖表示方程與等式之間的關(guān)系。
三.應(yīng)用練習(xí)
1.判斷下列式子是不是方程。
2.看圖列方程。
3.根據(jù)題意列方程。
四.拓展延伸
1、談?wù)勛约涸谥R和情感上的收獲。
2、送給同學(xué)們一個方程:天才+X=成功。
方程的意義的教案8
教學(xué)目標(biāo):
1、使學(xué)生初步認(rèn)識方程的意義,知道等式和方程之間的關(guān)系,并能進(jìn)行辨析。
2、使學(xué)生會用方程表示簡單情境中的等量關(guān)系,培養(yǎng)學(xué)生的動手操作能力、觀察能力、分析能力和解決實際問題的能力。
教學(xué)準(zhǔn)備:簡易天平、法碼、水筆、橡皮泥、紙條、白紙、磁鐵。
同學(xué)們,你們平時喜歡干什么?你們喜歡玩嗎?喜歡的請舉手?
這么多人喜歡玩,老師想問這么多同學(xué)中有人玩過玩過蹺蹺板嗎?玩過的請舉手,誰來說說玩蹺蹺板時是怎樣的情景?(學(xué)生自由回答)
當(dāng)兩邊的距離相等,重的一邊會把輕的一邊蹺起來,兩邊的重量相等,蹺蹺板就平衡。
利用這種現(xiàn)象,科學(xué)家們設(shè)計出了天平,老師也自己做了一個簡易的天平。我們用它來玩一個類似于蹺蹺板的游戲。好不好?
誰想上來玩?
請你在左邊放一個20克的法碼,右邊放一個50克的法碼,這時天平怎么樣?(右邊的把左邊的蹺起來了),在左邊再放一個20克的法碼,這時天平怎么樣?(右邊的把左邊的蹺起來了,說明右邊的重量比左邊的重),你能用一個數(shù)學(xué)式子來表示這時候的.現(xiàn)象嗎?(用水筆板書:20+20<50)
你能也用一個式子來表示這時候的現(xiàn)象嗎?(板書:20×20+10=50。學(xué)生說加法,則說兩個20相加還可用[用水筆板書:]
看來我們還可以用式子來表示天平的平衡情況,你們想不想親自來玩一玩?
老師為你們每一個學(xué)習(xí)小組也準(zhǔn)備了一架簡易天平,還有一些法碼,以及兩塊橡皮泥,大家可以利用這些工具,或者利用你們身邊一些比較輕的物體,如橡皮、小刀等,來玩一玩,然后把你們玩的時候看到的現(xiàn)象用式子表示出來,好不好?
給你們5分鐘的時間,比一比哪個小組又快又好。
哪個小組把自己所寫的式子拿上來展示出來。
你們對這些式子滿意嗎?
大家寫出了這么多的式子,你能把這些式子按照一個統(tǒng)一的標(biāo)準(zhǔn)分類嗎?小組討論怎么分?按照什么樣的標(biāo)準(zhǔn)分?
誰來說說你們是按照什么標(biāo)準(zhǔn)分的?
1、如果學(xué)生中有“是否含有未知數(shù)”(板書:含有未知數(shù))“是否是等式”(板書:等式)這兩類的指名上黑板分,其余的口頭交流。
2、把學(xué)生寫的式子分成兩堆,讓學(xué)生分]
師:按照不同的標(biāo)準(zhǔn),有不同的結(jié)果。這一種分法,我們得到的這幾個式子是什么式子?這一種分法,師:你能把這一種再分成兩類嗎?怎么分?指名板演。
象這樣,含有未知數(shù)的等式我們把它叫做方程。這也是我們今天這堂課要學(xué)習(xí)的內(nèi)容。出示課題。
練習(xí):你能舉一個方程的例子嗎?學(xué)生在本子上寫一個。
老師這兒也有幾個式子,它們是方程嗎?(用手勢表示,隨機(jī)讓學(xué)生說說為什么)
通過這幾道題的練習(xí),你對方程有了哪些新的認(rèn)識?
。1)未知數(shù)不一定用X表示。
。2)未知數(shù)不一定只有一個。
師:含有未知數(shù)的等式叫方程,那么方程和等式有什么關(guān)系呢?
也就是說:方程一定是(等式),但等式[不一定是(方程)]。
你能用自己的方式來表示方等式和方程之間的關(guān)系嗎?
例如畫圖或者別的方式,小組合作,試一試。(用水筆畫在白紙上,字要寫得大些)
師:同學(xué)們的圖非常形象地表示出了方程和等式之間的關(guān)系,1、這些圖你能用方程來表示嗎?
2、看來同學(xué)們對今天學(xué)的知識掌握得不錯,用方程還可以表示生活中的一些數(shù)量之間的關(guān)系?
如:我班一共有多少人,男生有多少人?如果把女生的人數(shù)看成X,你會用方程來表示男女生人數(shù)與全班人數(shù)之間的關(guān)系嗎?
師:這里還有一些有關(guān)我們學(xué)校的信息,誰來讀一讀。
3、新的謝橋中心小學(xué),是蘇州市內(nèi)占地面積最大的小學(xué)之一。建筑面積約25000平方米,3幢教學(xué)樓的建筑面積一共約為19500平方米,平均每幢為c平方米,其它建筑面積為m平方米。你能選擇其中一些信息列出方程來嗎?(同桌交流)
學(xué)了這堂課你有什么想說的嗎?你有什么想對老師說的嗎?
方程的意義的教案9
一,教學(xué)內(nèi)容
"義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)"五年級上冊p53~54方程的意義
二,教材分析
方程的意義對學(xué)生來說是一節(jié)全新的概念課,讓學(xué)生用一種全新的思維方式去思考問題,拓展了學(xué)生思維的空間,是數(shù)學(xué)思想方法認(rèn)識上的一次飛躍.方程的意義是學(xué)生學(xué)了四年的算術(shù)知識,及初步接觸了一點代數(shù)知識(如用字母表示數(shù))的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,同時也是學(xué)習(xí)"解方程"的基礎(chǔ),是滲透用方程表示數(shù)量關(guān)系式的一個突破口,是今后用方程解決實際問題的一塊奠基石.
三,教學(xué)目標(biāo)
根據(jù)新課標(biāo)的要求,結(jié)合教材的特點和學(xué)生原有的相關(guān)認(rèn)識基礎(chǔ)及生活經(jīng)驗確定本節(jié)課的教學(xué)目標(biāo):
1,使學(xué)生在具體的情境中理解方程的含義,體會等式與方程的關(guān)系,并會用方程表示簡單情境中的等量關(guān)系.
2,經(jīng)歷從生活情境到方程模型的構(gòu)建過程,使學(xué)生在觀察,描述,分類,抽象,交流,應(yīng)用的過程中,感受方程的思想方法及價值,發(fā)展抽象思維能力和增強(qiáng)符號感.
3,讓學(xué)生在學(xué)習(xí)中體驗到數(shù)學(xué)源于生活,充分享受學(xué)習(xí)數(shù)學(xué)的樂趣,進(jìn)一步感受數(shù)學(xué)與生活之間的密切聯(lián)系.
四,教學(xué)重點,難點
教學(xué)重點:理解方程的含義,以及在具體的`情境中建立方程的模型.
教學(xué)難點:正確尋找等量關(guān)系列方程.
五,教學(xué)設(shè)想
概念教學(xué)本來就比較抽象,而且方程思想作為一種全新的思維方式又有別于學(xué)生一貫的算術(shù)思路,因此在教學(xué)時要重視學(xué)生在理解的基礎(chǔ)上感知方程的意義,充分利用學(xué)生原有的認(rèn)識基礎(chǔ),關(guān)注由具體實例到一般意義的抽象概括過程,盡量直觀化,生活化,發(fā)揮具體實例對于抽象概括的支撐作用,同時又要及時引導(dǎo)學(xué)生超脫實例的具體性,實現(xiàn)必要的抽象概括過程.經(jīng)歷從具體-----抽象------應(yīng)用的認(rèn)知過程.
六,教學(xué)準(zhǔn)備:課件,天平,實物若干等
七,教學(xué)過程:
課前準(zhǔn)備:利用學(xué)具(簡易天平)感受天平平衡的原理.
教學(xué)過程
學(xué)生活動
設(shè)計意圖
一,創(chuàng)設(shè)情景,建立表象
1.認(rèn)識天平.
2.同學(xué)們通過課前的實際操作你發(fā)現(xiàn)要使天平平衡的條件是什么
(天平兩邊所放物體質(zhì)量相等)
3.用式子表示所觀察到的情景:
情景一:導(dǎo)入等式
(1)天平左邊放一個300克和一個150克的橙子,天平的右邊放一個450克的菠蘿
300+150=450
(2)天平左邊放四盒250克的牛奶,右邊放一盒1000克的牛奶
250+250+250+250=1000
或250×4=1000
情景二:從不平衡到平衡引出不等式與含有未知數(shù)的等式
方程的意義的教案10
教材簡析:
《方程的意義》一課是人教版小學(xué)數(shù)學(xué)五年級上冊第四單元《簡易方程》中的內(nèi)容。本節(jié)課的主要內(nèi)容是根據(jù)天平寫出式子,并通過類比分析歸納出方程的概念,并根據(jù)概念學(xué)會正確判斷一個式子是不是方程以及利用方程概念解決問題。方程這部分知識,在初等代數(shù)中占有重要的地位,方程這部分知識的學(xué)習(xí),是學(xué)生從算術(shù)方法解決問題到代數(shù)方法解決問題的過渡,因此,在教學(xué)中起著承上啟下的作用。
學(xué)情分析:
學(xué)生在學(xué)習(xí)《方程的意義》之前,在低年級的數(shù)學(xué)學(xué)習(xí)中均有填算式中的括號、數(shù)字謎等不同形式的思維訓(xùn)練,對于方程的意義有了一定的知識滲透,在本單元中,學(xué)生已經(jīng)學(xué)習(xí)了用字母表示數(shù),這些都為理解方程意義起著鋪墊作用。
教學(xué)目標(biāo):
1、了解方程的意義,弄清方程與等式的聯(lián)系與區(qū)別。
2、在自主探究的學(xué)習(xí)過程中,結(jié)合教學(xué)內(nèi)容幫助學(xué)生建立分類思想,進(jìn)一步感受數(shù)學(xué)與生活之間的密切聯(lián)系。
3、培養(yǎng)學(xué)生的動手操作能力、抽象概括能力,以及在合作學(xué)習(xí)中的的合作探究能力。
教學(xué)重點:
了解方程的意義
教學(xué)難點:
完成數(shù)量關(guān)系到等量關(guān)系的過渡,構(gòu)建方程的概念。
教學(xué)過程:
一、談話導(dǎo)入,認(rèn)識天平:
同學(xué)們,你們小時候玩兒過蹺蹺板嗎?(同時出示圖片)
對于這個游戲的玩兒法與經(jīng)驗,誰能向大家介紹一下?
其實在生活中,還有一樣物品與蹺蹺板長得很像,它可不是用來游戲的,而是用來測量的,它就是天平。
【蹺蹺板與天平有許多相似之處,它們都是在中間有一個支點,都靠力臂兩端的重量來達(dá)到平衡。但是對于學(xué)生而言,天平比較陌生,而蹺蹺板與學(xué)生的生活密切相關(guān),因此,以此導(dǎo)入,形象生動,學(xué)生容易找到舊經(jīng)驗與新事物的聯(lián)系,形成表象】
二、利用天平,寫出式子
在上一節(jié)數(shù)學(xué)活動課中,我們認(rèn)識了天平,利用天平稱量了物品的質(zhì)量。
下面我們就一起來利用天平來測量一杯水的重量。
【在這部分教學(xué)中,教師通過演示再現(xiàn)天平測量物體的過程,水的重量是未知的,用字母X來表示,這部分教學(xué)的重點是讓學(xué)生經(jīng)歷了由形象的天平左右兩邊的平衡關(guān)系過渡到用抽象到數(shù)學(xué)符號表示的思維過程,為突破教學(xué)難點進(jìn)行鋪墊!
三、合作探究,認(rèn)識方程
1、測量物品,寫出式子
下面請同學(xué)們再次利用天平測量桌面上物品的質(zhì)量,或者利用天平比較物品的輕重,并且根據(jù)天平的平衡關(guān)系寫出式子。最后將你們小組寫出的式子按照一定的標(biāo)準(zhǔn)進(jìn)行分類。
【《課程標(biāo)準(zhǔn)》中明確指出,數(shù)學(xué)課要讓學(xué)生積累數(shù)學(xué)基本的活動經(jīng)驗。數(shù)學(xué)作為一種普遍適用的技術(shù),是人們生活、勞動和學(xué)習(xí)必不可少的工具,因此基本的數(shù)學(xué)活動經(jīng)驗要在小學(xué)數(shù)學(xué)課中顯得尤為重要。在這部分的`教學(xué)中,我經(jīng)歷了實驗---不實驗——再實驗的設(shè)計過程。第一次教學(xué)中,我采用了讓學(xué)生動手操作,但在實驗中,學(xué)生由于對天平的好奇以及操作的不熟練,使大部分時間浪費(fèi)在了感知新事物上,沒有完成教學(xué)任務(wù);第二稿中,我放棄了實驗,讓學(xué)生直觀看教師的大屏幕演示,然后寫出式子,學(xué)生再根據(jù)圖片,寫出式子,結(jié)果整節(jié)課學(xué)生就在不停地對著抽象的符號寫和算,對知識沒有形成表象,練習(xí)效果不佳。后來,在網(wǎng)絡(luò)備課和教研員的指導(dǎo)下,我在課前加入了數(shù)學(xué)活動課,讓學(xué)生熟悉天平的操作過程,在課堂中,將重點放到利用天平寫出式子這一環(huán)節(jié),學(xué)生目的明確,操作熟練,高效完成了預(yù)設(shè)的教學(xué)目標(biāo)!
2、交流匯報,歸納概念:
教師選取了每個小組有特點的式子將其呈現(xiàn)在黑板上,學(xué)生根據(jù)自己的經(jīng)驗進(jìn)行分類,同時教師進(jìn)行板演:
等式不等式
含有未知數(shù)3x=180 50+2b>180
100+y=50×3 80
不含未知數(shù)50×2=100 100+20
根據(jù)板書,教師講解:像3x=180、100+y=50×3這樣,含有未知數(shù)的等式叫做方程,這就是我們今天所要學(xué)習(xí)的內(nèi)容。板書課題。
【"領(lǐng)悟數(shù)學(xué)基本思想"是新課標(biāo)中數(shù)學(xué)中最核心的要求。數(shù)學(xué)思想是數(shù)學(xué)知識和方法在更高層次上的抽象與概括。在本節(jié)課中,我更注重了對知識的類比歸納,()讓學(xué)生感知方程與等式的關(guān)系,與不等式的區(qū)別,最后歸納總結(jié)出方程的特征!
3、概念演繹,建立模型:
剛才同學(xué)們根據(jù)天平所寫的式子中還有方程嗎?
老師在測量中的這幾個式子中哪個是方程?
你能根據(jù)方程的意義也寫出幾個與眾不同的方程嗎?
【通過這三個內(nèi)容的練習(xí),既完成了對概念的基本理解與應(yīng)用,同時又將前面教學(xué)中只有乘法和加法的方程式子進(jìn)行補(bǔ)充,學(xué)生寫出了將含有減法與除法的方程,使方程的基本模型更清晰準(zhǔn)確!
四、練習(xí)應(yīng)用,鞏固新知
在練習(xí)中,我設(shè)計了這樣幾個題目:
1、判斷式子是不是方程
2、根據(jù)線段圖寫方程
3、根據(jù)數(shù)量關(guān)系寫方程
4、判斷是否是方程
5、方程與等式的關(guān)系
【通過由淺入深的練習(xí),學(xué)生從基本的判斷到實際的應(yīng)用,從具體的圖片寫方程到文字的數(shù)量關(guān)系寫方程,最后通過一道判斷題,將等式與方程的關(guān)系用集合圖來表示,使學(xué)生對方程的概念的理解更準(zhǔn)確,應(yīng)用更靈活。】
五、拓展延伸,感受文化
早在三千六百多年前,埃及人就會用方程解決數(shù)學(xué)問題了。在我國古代,大約兩千年前成書的《九章算術(shù)》中,就記載了用一組方程解決實際問題的資料。一直到三百年前,法國的數(shù)學(xué)家笛卡兒第一個提出用x、y、z等字母代表未知數(shù),才形成了現(xiàn)在的方程。
【數(shù)學(xué)是人類文化的重要組成部分,任何一個數(shù)學(xué)知識的形成都凝聚著人類智慧與汗水。因此通過這部分知識的講解,學(xué)生對方程有了更全面的了解,同時激發(fā)了學(xué)生的學(xué)習(xí)鉆研熱情。】
方程的意義的教案11
一、教學(xué)內(nèi)容:
人教版五年級上冊第62~63頁“方程的意義”。
二、教學(xué)目標(biāo):
1.在具體的情境中理解方程的含義,初步認(rèn)識等式與方程的關(guān)系,會用方程表示簡單的等量關(guān)系。
2.在觀察、比較、描述、抽象、概括的過程中,讓學(xué)生經(jīng)歷將現(xiàn)實問題抽象成等式與方程的過程,體會方程是刻畫現(xiàn)實世界的數(shù)學(xué)模型,發(fā)展抽象思維。
3.加強(qiáng)數(shù)學(xué)知識與現(xiàn)實生活的聯(lián)系,有利于培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識。培養(yǎng)學(xué)生認(rèn)真觀察、善于思考的學(xué)習(xí)習(xí)慣,滲透轉(zhuǎn)化的數(shù)學(xué)思想。
三、教學(xué)重、難點:
1.教學(xué)重點:理解并掌握方程的意義。
2.教學(xué)難點:建立“方程”的概念,并會應(yīng)用。
四、教學(xué)過程:
(一)情境引入
今天的這節(jié)數(shù)學(xué)課上老師帶了一種利用平衡創(chuàng)造的工具,你們看是什么?(出示天平)關(guān)于天平你們都有哪些了解的?(簡單介紹天平的工作原理)
。ǘ┨骄啃轮
1.現(xiàn)在我們對天平有了初步的了解,那我們來看這幅圖(出示天平:左盤2個50g的物品,右盤100g砝碼。)
請同學(xué)們仔細(xì)觀察,在這副圖里你獲得了哪些信息?
師:能用一個式子表示這種平衡狀態(tài)嗎?(50+50=100或50×2=100)。
2.我們再來看這幅圖又告訴了你什么信息?(課件出示:左邊一個空杯子,右邊一個100g砝碼的天平。)(杯子重100g)
3.師:現(xiàn)在我給杯子倒?jié)M水,天平還平衡嗎?天平發(fā)生了怎樣的變化呢?
師:我們不知道加入的水有多重,可以用一個未知數(shù)x來表示(水重xg),那么天平左邊的杯子和水共重多少克?可以怎樣表示呢?(100+x)
師:天平向左傾斜,說明左邊這杯水的重量比右邊100g砝碼的重量要重。得到數(shù)學(xué)式子:100+x>100
4.現(xiàn)在我給右盤再加一個100g的砝碼,仔細(xì)觀察,現(xiàn)在天平平衡了嗎?得到數(shù)學(xué)式子:100+x>200
師:我給右盤再增加一個100g的砝碼,你又發(fā)現(xiàn)了什么?得到數(shù)學(xué)式子:100+x<300
師繼續(xù)演示:將右盤中的.一個100克砝碼換成50克砝碼,天平逐漸平衡,從中得到數(shù)學(xué)式子100+x=250。
5.觀察比較:
50+50=100
100+x>100
100+x>200
100+x<300
100+x=250
總結(jié):像這樣兩邊相等的(用等號連接的)算式我們把它叫做等式。
像100+x=250這樣,含有未知數(shù)的等式就是方程。
揭題:今天這節(jié)課我們學(xué)的就是“方程的意義”。(板書課題)
6.提問:這一個等式是方程嗎?為什么?
追問:這兩個式子里都含有未知數(shù),它們是方程嗎?
思考:你認(rèn)為一個方程應(yīng)該符合哪些條件?
。◤(qiáng)調(diào):方程既要是等式,又要含有未知數(shù)。)
(三)鞏固練習(xí)
1.判斷下面哪些式子是方程,并同桌說一說理由。
35+65=100 8-x=2 y+24
2.4=a×2 x-14>72 15÷b=3
5x+32=47 28<16+14 6(y+2)=42
2.下面哪些天平不能用方程表示?(出示6幅天平圖)
用方程表示出剩下天平的數(shù)量關(guān)系。
。ㄕf一說天平兩邊的數(shù)量關(guān)系,列方程)
3.用方程表示下面的數(shù)量關(guān)系。(說數(shù)量關(guān)系,列方程)
先獨立列出方程,再與同桌說一說方程表示的數(shù)量關(guān)系。
4.猜方程
讓學(xué)生初步感知:方程一定是等式,等式不一定是方程。
5.寫方程,編故事。
6.方程“史話”。
。ㄋ模┱n堂小結(jié)
今天這節(jié)課我們學(xué)習(xí)了方程,方程必須要具備幾個條件?方程和等式是怎樣的關(guān)系?
方程的意義的教案12
教學(xué)目標(biāo):
知識目標(biāo):理解與掌握方程的意義,弄清方程和等式兩個概念的關(guān)系。
能力目標(biāo):培養(yǎng)學(xué)生認(rèn)真觀察、思考分析問題的能力。
情感目標(biāo):激發(fā)學(xué)生求知欲和好奇心,感受數(shù)學(xué)探索的樂趣,體會“生活中處處蘊(yùn)涵數(shù)學(xué)知識”;滲透數(shù)學(xué)來源于實際生活辯證唯物主義思想。
教學(xué)重點:理解和方掌握程的意義,會用方程的意義去判斷一個式子是否是方程。
教學(xué)難點:會用方程表示簡單情境中的等量關(guān)系。
教學(xué)準(zhǔn)備:教學(xué)課件。
教學(xué)流程:
一、導(dǎo)入新課:
教師:我們已經(jīng)學(xué)習(xí)了用字母表示數(shù),今天學(xué)習(xí)解簡易方程。這部分知識非常重要,掌握了它會使我們多了一種解題方法,可以使某些較難的應(yīng)用題化難為易,有助于提高我們分析問題和解決問題的能力。
二、探究新知:
。ㄒ唬┨骄糠匠痰囊饬x:
介紹天平:(課件出示天平圖)
天平實驗,引出方程:
1、第一步,稱出一只空杯子重100克;
第二步,往杯子里倒人約X克水,使天平出現(xiàn)傾斜。
第三步,增加100克砝碼,發(fā)現(xiàn)了什么?如果將水設(shè)為x克,那么用一個式子該怎么表示杯子和水比200克重這個關(guān)系呢?(100+x>200)
第四步,再增加100克砝碼,天平往砝碼這邊傾斜。哪邊重些?怎樣用式子表示?(100+x
第五步,把一個100克的砝碼換成50克,天平出現(xiàn)平衡。現(xiàn)在兩邊的質(zhì)量怎樣?用式子怎樣表示?(100+x=250)
2、教師:①觀察100+x=250:這是一個等式嗎?這個等式有什么特點?
②像100+x=250這樣含有求知數(shù)的等式,人們給它起了個名字,你們知道叫什么嗎?(方程)
小結(jié):像100+x=250這樣的含有未知數(shù)的等式,稱為方程。
3、深入探討理解:
、俑鶕(jù)方程的含義,方程應(yīng)該具備哪些條件,②方程與等式之間有什么關(guān)系,你能用集合圖來表示嗎?
寫方程,加深對方程的認(rèn)識:
三、練習(xí)鞏固:
1、完成課本第54頁做一做。在是方程的式子后面打上“√”。
判斷并說胡理由。通過交流使學(xué)生明確判斷一個式子是不是方程,一看是不是等式,二看有沒有未知數(shù)。
2、判斷,對的在括號里打√,錯的打×。
。1)等式都是方程,方程都是等式。()
。2)含有未知數(shù)的.式子叫方程。()
。3)不是方程。()
3、用方程表示下面的等量關(guān)系。
。1)加上35等于91。(2)的3倍等于57。
。3)減31的差是86。(4)7.8除以等于1.3。
4、先說出下面題目中的數(shù)量間的相等關(guān)系,然后用方程表示出各題中數(shù)量間的相等關(guān)系。
。1)文具店原有乒乓球40筒,賣出χ筒,還剩18筒。
。2)某班有男生23人,女生χ人,共有50人。
。3)小紅買了5支鉛筆,每支χ元,共付9元。
。4)一頭大象重5.1噸,一頭牛重χ噸,這頭牛比大象輕4.75噸。
。5)甲地距乙地S千米,一輛汽車以每小時42千米的速度從甲地開往乙地,12小時到達(dá)。
5、開放題:媽媽生日到了,小明想用12元零花錢為媽媽買幾枝康乃馨,康乃馨每枝X元,他的錢如果買4枝則多3.6元,如果買6枝則少0.6元。根據(jù)題目提供的信息,選擇有用的條件,你能列幾個方程?(同桌議一議)
四、課堂總結(jié):
教師:想一想,這節(jié)課學(xué)習(xí)了什么?你有哪些收獲?
課后反思:
學(xué)生對什么是方程都有所了解,本節(jié)課是成功的。
方程的意義的教案13
教學(xué)目標(biāo):
1、知識與技能:讓學(xué)生理解方程的意義,知道什么是方程的解,什么是解方程,并弄清等式與方程的關(guān)系。
2、過程與方法:會判斷什么是方程,會解一步計算的方程,并會檢驗方程的解。
3、情感態(tài)度與價值觀:讓學(xué)生養(yǎng)成良好的檢查、驗算的習(xí)慣,培養(yǎng)學(xué)生的分析能力、觀察能力。
教學(xué)重點:
理解方程的意義,初步掌握解方程的方法和書寫格式。
教學(xué)難點:
方程的解和解方程兩個概念間的聯(lián)系及區(qū)別,并會應(yīng)用。
教具準(zhǔn)備:
課件、白紙
教學(xué)過程:
一、激情導(dǎo)入
1、游戲引出課題:
師:小朋友們,我們來做個游戲吧!老師來說一個詞語,你們反這個詞語反一反說出來,好嗎?看誰反應(yīng)快!
父母的愛——愛父母;動物的畫——畫動物;
節(jié)目的表演——表演節(jié)目;生命的感悟——感悟生命;朋友的理解——理解朋友;
朋友的善待——善待朋友;親人的召換——召換親人;兒女的擔(dān)憂——擔(dān)憂兒女
問題的答——答問題;方程的解——解方程;
引出課題:板書“方程的解解方程”
這節(jié)課我們來研究這里面的知識。
二、講解概念“等式、方程”
1、找朋友:
師:剛才我們玩的這個游戲中,找到了好幾對文字上的朋友。
下面,請你來幫這些式子或數(shù)字找找朋友,你愿意嗎?
生:愿意。
、、出示課件:同桌之間說一說;指名回答,根據(jù)學(xué)生回答再次出示課件。
師:這幾對好朋友都有什么特點呢?
生:它們相等。(關(guān)鍵引出“相等”)
師:除了把它們用線連起來,還可以用什么方法來表示它們之間是相等的呢?
生:列成一個式子。
學(xué)生口答列式,師邊板書:80-20=60
2+0.5=2.5
30÷15=2
30×2=60
師:像這樣用等號連接起來的,表示左右兩邊相等的式子,我們把它們?nèi)∶械仁健?/p>
師:你能舉例說幾個等式嗎?
、凇⒁龇匠蹋
師:那剩下的'幾個它們找不到朋友,心里不太高興,你能把它們也連連線寫成一個等式嗎?
生:能。
學(xué)生口答并板書,如:x+3=9
300-b=250
3a=18
師:我們又找到了3對朋友,它們也是等式。那這三個等式跟剛才的四個等式有哪些相同和不同的地方嗎?
生:它們有未知數(shù)x、a、b。
師:像這樣含有未知數(shù)的等式,我們給它取名叫方程。
你能舉例說幾個方程嗎?
2、等式與方程的關(guān)系:
師:那等式和方程之間到底是什么關(guān)系呢?
你能用一種直觀形象的方法來表示它們之間的關(guān)系嗎?
你可以在紙上寫一寫、畫一畫,用自己喜歡的方式來表示,四人小組討論一下。
指名回答。出示課件并板書。
師小結(jié):方程屬于等式,里面含有未知數(shù),是一種特殊的等式,但等式不一定是方程。
3、判斷練習(xí):
師:我們有了方程和等式的知識,當(dāng)遇到一個式子,要判斷它是不是方程時,應(yīng)該怎么想?
生:先看它是不是等式,如果是等式,再看它有沒有未知數(shù)。如果它有未知數(shù),就是方程;如果沒有未知數(shù),就不是方程,而是一般的等式。
師小結(jié):一必須是等式,二必須含有未知數(shù)。
師出示課件中的練習(xí):下列哪些是方程,哪些不是方程?
、、下面哪些是方程,哪些不是方程:
35-b=1284÷12=7
5x-32<749÷y=7
450x=90069+a
、凇⒑形粗獢(shù)的算式叫做方程。
③、方程一定是等式;等式一定是方程。
、堋35+x=76既是等式,也是方程。
、、30+20=10+40是等式,但不是方程。
⑥、y=0不是方程。
、、x=20是方程30+x=50的解。
方程的意義的教案14
教學(xué)內(nèi)容:教科書第1~2頁的內(nèi)容及練習(xí)一的1~3題。
教學(xué)目標(biāo):
1、通過學(xué)習(xí),使學(xué)生理解方程的含義,知道像X+50=150、2X=200這樣含有未知數(shù)的等式是方程。
2、培養(yǎng)學(xué)生概括、歸納的能力。
教學(xué)重點與難點:通過學(xué)習(xí),使學(xué)生理解方程的含義。
教學(xué)流程:
一、教學(xué)例1
出示例1,提出要求:你能用等式表示天平兩邊物體的質(zhì)量關(guān)系嗎?
學(xué)生在本子上寫。
指名回答,板書:50+50=100
含有等號的式子叫等式,它表示等號兩邊的結(jié)果是相等的。
二、教學(xué)例2
學(xué)生自學(xué)
1、學(xué)生在書上獨立填寫,用式子表示天平兩邊的質(zhì)量關(guān)系。
2、小組同學(xué)交流四道算式,最后達(dá)成統(tǒng)一認(rèn)識:
X+50>100X+50=100
X+50<100X+X=100
3、把這4道算式分成兩類,可以怎樣分,先獨立思考后再小組內(nèi)交流,要說出理由。
學(xué)生可能會這樣分:
第一種:X+50>100X+50=100
X+50<100X+X=100
第二種:X+50>100X+X=100
X+50<100X+50=100
引導(dǎo)學(xué)生理解第一種分法:
你為什么這樣分,說說你的'想法。
小結(jié):像右邊的式子就是我們今天所要學(xué)習(xí)的方程,請同學(xué)們在書上找到什么是方程,讀一讀,不理解的和同桌交流。
指名學(xué)生說,教師板書:像X+50=150、2X=200這樣含有未知數(shù)的等式是方程。
提問:你覺得這句話里哪兩個詞比較重要?“含有未知數(shù)”“等式”
那X+50>100、X+50<100為什么不是方程呢?
提問:那等式和方程有什么關(guān)系呢,在小組里交流。
方程一定是等式,但等式不一定是方程。
三、完成“試一試”、“練一練”
學(xué)生獨立完成。
集體訂正時圍繞“含有未知數(shù)的等式”進(jìn)一步理解方程的含義
四、課堂作業(yè):練習(xí)一的1、2、3。
板書:X+50=100
X+X=100
像X+50=150、2X=200這樣含有未知數(shù)的等式是方程。
方程的意義的教案15
教學(xué)目標(biāo):
(1)使學(xué)生理解方程概念,感受方程思想。
(2)經(jīng)歷從生活情景到方程模型的建構(gòu)過程。
(3)培養(yǎng)學(xué)生觀察、描述、分類、抽象、概括、應(yīng)用等能力。
教學(xué)過程:
一、創(chuàng)設(shè)情景,抽象數(shù)學(xué)模式。
1.出示實物天平。
。▽嵨锾炱奖容^小,用屏幕上的天平來模擬實驗。)
2.兩個大蘋果和一個小西瓜,它們的重量我們還不知道,如果要分別放在兩個盤上,猜猜看,天平可能會哪邊重呢
。ㄕf明兩邊的重量可能有三種不同的關(guān)系。)
用式子描述重量之間的相等關(guān)系。
3.一場籃球比賽,紅、藍(lán)兩隊打得還挺激烈的,你能來描述兩隊的情況嗎?
用式子表示兩隊比分的關(guān)系。
紅隊的教練啊也關(guān)注了這個情況,馬上叫了一次暫停,并作了戰(zhàn)術(shù)上的調(diào)整,一上場的一段時間里,只有紅隊連續(xù)得了分,請你猜一猜,兩隊的情況會怎樣呢?
用式子來表示比分的三種關(guān)系。
4.創(chuàng)設(shè)四個情景。
。1)每個情景中數(shù)量之間有什么關(guān)系?
。2)你能用關(guān)系式清晰地來描述嗎?
二、引導(dǎo)分類,概括方程概念。
剛才我們對情景的描述得到了很多式子。
200+200=400182318+2318+2318+=23
280100120425+=7022y+720=1050
1.學(xué)生嘗試第一次分類。
可能有幾種不同的分法。
(1)看是否是等式。
(2)看是否含有未知數(shù)。
2.學(xué)生嘗試第二次分類。
得到四組不同的式子。
3.描述每一組的特征。
4.引導(dǎo)概括方程概念。
含有未知數(shù)的等式叫方程。
三、抓等量關(guān)系,體會方程本質(zhì)。
1.演示動態(tài)平衡。有等量關(guān)系,能用方程表示
2.出示情景(沒有等量關(guān)系,不能用方程表示。)
出示情景120元正好買2個玩具企鵝。(有等量關(guān)系,能用方程表示)
3.通過今天這節(jié)課,你學(xué)到了什么呢?
四、聯(lián)系實際,應(yīng)用與拓展。
1.周老師從無錫到徐州來上課。
。1)線段圖。
。2)我乘火車從無錫站開出,每小時行千米,7小時到達(dá)徐州站。無錫站到徐州站的鐵路長525千米。
。3)到了徐州站,我買了3枝圓珠筆,每枝元,付出20元,找回2元。
2.情景圖。
本屆奧運(yùn)會上,中國臺北隊獲得了枚金牌,中國隊獲得了32枚,日本隊獲得y枚。男孩說:中國臺北隊金牌數(shù)的16倍正好等于中國隊的金牌數(shù)。女孩說:日本隊的金牌數(shù)等于中國臺北隊的8倍。
3.開放題。
小芳集郵共260張,小明集郵共300張。怎樣才能使兩人的集郵張數(shù)一樣多(用方程表示)
方程的意義教學(xué)設(shè)計的說明
在新課程背景下,學(xué)生概念的形成應(yīng)具有更大的涵蓋面、影響力和遷移性,由此通過自我理解、生成、連接,形成自己的知識系統(tǒng)。本課《方程的意義》的教學(xué)設(shè)計,基于對數(shù)學(xué)概念及概念教學(xué)的再把握,相對于傳統(tǒng)的教學(xué),有了比較大的變化。這是我們的嘗試,也是一種思考和探索。
整體的`把握:
數(shù)學(xué)概念不僅是局部的,而且是全局的;不僅是靜態(tài)的,而且是動態(tài)的;不僅是學(xué)科的,而且是兒童的。所以對方程概念及其教學(xué)應(yīng)從多個層面加以把握:
形式層面含有未知數(shù)的等式(是關(guān)系的一種)。這是一種靜態(tài)的結(jié)論。
發(fā)現(xiàn)層面經(jīng)歷方程模式的生成過程,它來源于現(xiàn)實又回到現(xiàn)實,尋找等量關(guān)系并用方程來表示。這是一個動態(tài)的過程。
直觀具體層面舉出正例或反例。
直覺層面一種數(shù)學(xué)的意識、一種方程的感覺。
這樣才能形成一個有力的認(rèn)知結(jié)構(gòu)(其中包含知識結(jié)構(gòu)、方法結(jié)構(gòu)和經(jīng)驗結(jié)構(gòu))
目標(biāo)的把握:
經(jīng)歷從現(xiàn)實問題到方程概念建立的過程,(方程是從現(xiàn)實生活到數(shù)學(xué)的一個提煉過程,一個用數(shù)學(xué)符號提煉現(xiàn)實生活中特定關(guān)系的過程。)體會方程是刻畫現(xiàn)實世界的數(shù)學(xué)模型。
滲透方程思想的三個方面:設(shè)立未知量,將其當(dāng)作已知數(shù),參與到問題中事實的表達(dá);建立等量關(guān)系,用方程表示(方程是說明兩件事情是等價的);區(qū)別未知量與己知量,只要經(jīng)過運(yùn)算,就可用已知數(shù)表示未知量。
過程的把握:
統(tǒng)攬全局基礎(chǔ)上的局部聚集,突出知識胚胎的生成。學(xué)生的認(rèn)識不是線性發(fā)展的,而是整體式推進(jìn)的。各個部分知識的拼裝不可能產(chǎn)生真正意義上的有生命的知識,只有胚胎式的整體推進(jìn)才能領(lǐng)略到知識生命的意蘊(yùn)。所以概念教學(xué)須克服原有的分割式、部分式教學(xué),突出知識胚胎的生成。傳統(tǒng)教學(xué)注重從部分到整體,形成一個結(jié)構(gòu),F(xiàn)代教學(xué)應(yīng)更重視從整體到部分再到整體,形成更有意義和活力的結(jié)構(gòu)。
本課方程概念的教學(xué),力圖圍繞目標(biāo)形成一個包括知識技能、思維方式和方程思想的整體結(jié)構(gòu),在其后的教學(xué)中再對方程的各個部分進(jìn)行深化,形成所謂同心圓結(jié)構(gòu)的知識生成模型,這是兒童認(rèn)識的規(guī)律,也許可以解決數(shù)學(xué)教學(xué)中知識太散的問題。
經(jīng)歷問題情景數(shù)學(xué)模型解釋與應(yīng)用的全過程。從問題情景數(shù)學(xué)模型展開數(shù)學(xué)化和結(jié)構(gòu)化的過程。再從數(shù)學(xué)模型解釋與應(yīng)用展開結(jié)合現(xiàn)實尋找意義的過程。方程整體概念生成必須經(jīng)歷這樣的過程,才能使目標(biāo)的各個部分協(xié)調(diào)地組合在一起,產(chǎn)生一種數(shù)學(xué)的意識和方程的觀念。
參考文獻(xiàn):
。1)史寧中、孔凡哲著.方程思想及其課程教學(xué)設(shè)計數(shù)學(xué)教育熱點問題系列訪談錄之一.《課程.教材.教法》第24卷第9期,(2)林永偉、葉立軍編著.《數(shù)學(xué)史與數(shù)學(xué)教育》第65頁.方程產(chǎn)生歷史的啟示意義。
。3)《全日制義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(實驗稿)》北京師范大學(xué)出版社。
【方程的意義的教案】相關(guān)文章:
《方程的意義》教案05-28
《方程》教案01-27
人教新課標(biāo)五年級數(shù)學(xué)方程的意義教案01-16
比的意義教案01-06
解方程例4教案02-08
數(shù)學(xué)課《方程》教案03-25
分?jǐn)?shù)的意義教案04-17
小數(shù)的意義教案10-20
分?jǐn)?shù)的意義教案01-02