初中數(shù)學(xué)教案
作為一無名無私奉獻(xiàn)的教育工作者,常常要寫一份優(yōu)秀的教案,借助教案可以恰當(dāng)?shù)剡x擇和運用教學(xué)方法,調(diào)動學(xué)生學(xué)習(xí)的積極性。我們該怎么去寫教案呢?下面是小編整理的初中數(shù)學(xué)教案,歡迎大家借鑒與參考,希望對大家有所幫助。
初中數(shù)學(xué)教案1
教學(xué)目標(biāo)
1.理解二元一次方程及二元一次方程的解的概念;
2.學(xué)會求出某二元一次方程的幾個解和檢驗?zāi)硨?shù)值是否為二元一次方程的解;
3.學(xué)會把二元一次方程中的一個未知數(shù)用另一個未知數(shù)的一次式來表示;
4.在解決問題的過程中,滲透類比的思想方法,并滲透德育教育。
教學(xué)重點、難點
重點:二元一次方程的意義及二元一次方程的解的概念.
難點:把一個二元一次方程變形成用關(guān)于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實質(zhì)是解一個含有字母系數(shù)的方程.
教學(xué)過程
1.情景導(dǎo)入:
新聞鏈接:桐鄉(xiāng)70歲以上老人可領(lǐng)取生活補(bǔ)助,得到方程:80a+150b=902880.2.
2.新課教學(xué):
引導(dǎo)學(xué)生觀察方程80a+150b=902880與一元一次方程有異同?
得出二元一次方程的概念:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1次的方程叫做二元一次方程.
3.合作學(xué)習(xí):
給定方程x+2y=8,男同學(xué)給出y(x取絕對值小于10的整數(shù))的值,女同學(xué)馬上給出對應(yīng)的x的值;接下來男女同學(xué)互換.(比一比哪位同學(xué)反應(yīng)快)請算的最快最準(zhǔn)確的同學(xué)講他的計算方法.提問:給出x的值,計算y的值時,y的'系數(shù)為多少時,計算y最為簡便?
4.課堂練習(xí):
1)已知:5xm-2yn=4是二元一次方程,則m+n=;
2)二元一次方程2x-y=3中,方程可變形為y=當(dāng)x=2時,y=_
5.課堂總結(jié):
(1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);
(2)二元一次方程解的不定性和相關(guān)性;
(3)會把二元一次方程化為用一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式.
作業(yè)布置
本章的課后的方程式鞏固提高練習(xí)。
初中數(shù)學(xué)教案2
學(xué)習(xí)目標(biāo):
1.理解平行線的意義兩條直線的兩種位置關(guān)系;
2.理解并掌握平行公理及其推論的內(nèi)容;
3.會根據(jù)幾何語句畫圖,會用直尺和三角板畫平行線;
學(xué)習(xí)重點:
探索和掌握平行公理及其推論.
學(xué)習(xí)難點:
對平行線本質(zhì)屬性的理解,用幾何語言描述圖形的性質(zhì)
一、學(xué)習(xí)過程:預(yù)習(xí)提問
兩條直線相交有幾個交點?
平面內(nèi)兩條直線的.位置關(guān)系除相交外,還有哪些呢?
。ㄒ唬┊嬈叫芯
1、 工具:直尺、三角板
2、 方法:一"落";二"靠";三"移";四"畫"。
3、請你根據(jù)此方法練習(xí)畫平行線:
已知:直線a,點B,點C.
(1)過點B畫直線a的平行線,能畫幾條?
(2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?
。ǘ┢叫泄砑巴普
1、思考:上圖中,①過點B畫直線a的平行線,能畫 條;
②過點C畫直線a的平行線,能畫 條;
、勰惝嫷闹本有什么位置關(guān)系? 。
、谔剿鳎喝鐖D,P是直線AB外一點,CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?
二、自我檢測:
。ㄒ唬┻x擇題:
1、下列推理正確的是 ( )
A、因為a//d, b//c,所以c//d B、因為a//c, b//d,所以c//d
C、因為a//b, a//c,所以b//c D、因為a//b, d//c,所以a//c
2.在同一平面內(nèi)有三條直線,若其中有兩條且只有兩條直線平行,則它們交點的個數(shù)為( )
A.0個 B.1個 C.2個 D.3個
(二)填空題:
1、在同一平面內(nèi),與已知直線L平行的直線有 條,而經(jīng)過L外一點,與已知直線L平行的直線有且只有 條。
2、在同一平面內(nèi),直線L1與L2滿足下列條件,寫出其對應(yīng)的位置關(guān)系:
。1)L1與L2 沒有公共點,則 L1與L2 ;
。2)L1與L2有且只有一個公共點,則L1與L2 ;
(3)L1與L2有兩個公共點,則L1與L2 。
3、在同一平面內(nèi),一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關(guān)系是 。
4、平面內(nèi)有a 、b、c三條直線,則它們的交點個數(shù)可能是 個。
三、CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.
初中數(shù)學(xué)教案3
學(xué)情分析:
高三(7)是我校理科重點班,該班的學(xué)生具有良好的數(shù)學(xué)功底,處于復(fù)習(xí)階段的他們目標(biāo)更明確,學(xué)習(xí)熱情高,課堂投入,思考積極。就本節(jié)開課的內(nèi)容而言,學(xué)生已掌握了“對稱問題”本質(zhì)屬性,能夠從圖象和表達(dá)式上準(zhǔn)確地理解對稱問題。但也只是停留在就事論事的基礎(chǔ)上,對問題的抽象、歸納概括,引申拓展還缺乏一定的能力和意識。對于周期概念,學(xué)生沒有什么的問題。
教材分析:
1.對稱問題是高中數(shù)學(xué)中比較難的問題,學(xué)生一般由于問題的抽象性,同時由于這中間存在關(guān)于點對稱和關(guān)于直線對稱這兩類問題,而它們的數(shù)學(xué)表達(dá)式又是那么相似,學(xué)生如果沒有真正理解很難分清誰是誰非。而且在高考的問題中經(jīng)常會碰到,因此有必要加以澄清和深化理解。
2.對稱問題和周期問題也存在一定的聯(lián)系,本節(jié)可以通過足夠的條件闡明這一聯(lián)系的實質(zhì)。
教學(xué)目標(biāo):
理解一個函數(shù)存在兩次對稱(可能關(guān)于兩個點對稱或兩條直線對稱或一個點加上一個對直線)時,如何判斷函數(shù)具有周期性。
重點和難點:
具有兩次對稱問題的抽象函數(shù)具有周期性,而且要求求出周期。
教學(xué)方法:
從簡單到復(fù)雜,以啟發(fā)思想為指導(dǎo),精講重思,暴露學(xué)生的思維,使學(xué)生整節(jié)課都處于思考之中。
教學(xué)程序:
一、引入
師:當(dāng)一個人站在一面鏡子前,面對鏡子一定的距離,那么在鏡中的像有什么特征?
生:(物理常識)人和像關(guān)于鏡子對稱。
師:現(xiàn)在在此人的身后再放一面鏡子,鏡面對著人的背面,此時在此人面前的鏡子中的像又是什么?
生:如果鏡子夠大的話,里面將是無數(shù)個排列的人。
師:道理何在?
生:首先是人在前面鏡中的像連同人一起要在后面鏡中成像,這一像反過來連同人又在前面鏡中成像,這樣反反復(fù)復(fù),就得到了無數(shù)個人像,而且具有周期性(即圖象重復(fù)出現(xiàn))。
師:如果將人看成一段函數(shù),將鏡子看成一條對稱軸,那么整個函數(shù)的圖象應(yīng)該是怎樣的(圖象具有什么特征)。
引入課題:對稱+對稱=?
二、探究
回顧:關(guān)于圖象的對稱問題分為兩類:一類是關(guān)于點對稱,另一類是關(guān)于直線對稱,今天我們來研究一般的函數(shù)對稱問題,我們從函數(shù)表達(dá)式來研究,對于直線對稱:若f(x)關(guān)于x=a對稱,則有f(x)=f(2a-x)或f(a+x)=f(a-x);對于點對稱:f(x)關(guān)于(a,0)對稱,則有f(x)=-(2a-x)或f(a+x)=-f(a-x)。
對于奇函數(shù)[f(x)=-f(-x)]和偶函數(shù)[f(x)=f(-x)],則是這兩類對稱中的特例。
延伸:若是f(a+x)=f(b+x),則函數(shù)關(guān)于什么對稱(關(guān)于直線x=(a+b)/2對稱)
提問:請同學(xué)們找?guī)讉關(guān)于直線x=a對稱的函數(shù)的表達(dá)式?
生:f(4a-x)=f(6a+x)
下面研究當(dāng)函數(shù)具有兩次對稱時,結(jié)果有什么特征?
問題設(shè)計:
、俸瘮(shù)f(x)
(1)是偶函數(shù)
。2)關(guān)于x=a對稱
分析:由條件(2),可得f(a+x)=f(a-x),又由條件(1),所以f(x+a)=f(x-a)。
(以x+a代替上式中的x),所以f(x)=f(2a+x),由周期定義f(x)=f(T+x),所以f(x)是以|2a|為周期的函數(shù)
、诤瘮(shù)f(x)
。1)是奇函數(shù)
。2)關(guān)于x=a對稱
分析:由條件(2),可得f(x)=f(2a-x)又由條件(1)f(x)=-f(-x),所以-f(-x)=f(2a-x),即-f(x)=f(2a+x),所以f(4a+x)=-f(2a+x)=f(x),可得函數(shù)f(x)是以|4a|為周期的函數(shù),
以此類推,
③函數(shù)f(x)滿足
。1)是偶函數(shù)
。2)關(guān)于(a,0)對稱
、芎瘮(shù)f(x)滿足
。1)是奇函數(shù)
。2)關(guān)于(a,0)對稱
、莺瘮(shù)f(x)滿足
。1)關(guān)于x=b對稱
。2)關(guān)于x=a對稱
⑥函數(shù)f(x)滿足
。1)關(guān)于(a,0)對稱
(2)關(guān)于(b,0)對稱
、吆瘮(shù)f(x)滿足
。1)關(guān)于x=a對稱
。2)關(guān)于(b,0)對稱
。◣熒餐瓿桑
學(xué)生練習(xí):見復(fù)習(xí)參考書
評教:
教材處理恰當(dāng)
1.前面的課堂教學(xué)中已經(jīng)講了關(guān)于圖象平移,伸縮的問題,對于對稱問題在前面也分析了關(guān)于含絕對值的函數(shù)圖象問題(y=|f(x)|,y=f(|x|))。
2.今天這堂課分析非絕對值的對稱問題,主要是關(guān)于點對稱和直線對稱的問題。
3.下一節(jié)殷老師構(gòu)思,將一個函數(shù)的對稱變成兩個函數(shù)的對稱問題,即如:函數(shù)f(x)和函數(shù)f(-x)的關(guān)系;函數(shù)f(x)和函數(shù)f(2a-x)的關(guān)系;函數(shù)-f(x)和函數(shù)f(2a+x)的關(guān)系,即對照這堂課的內(nèi)容,將一個函數(shù)變成兩個函數(shù),再尋找二者關(guān)系,以便通過其中一個函數(shù)來解決另一個函數(shù)問題。如:已知函數(shù)-f(x)的圖象,畫出函數(shù)f(2a+x)的圖象及分析其性質(zhì)。
(點評:對于教學(xué)任務(wù)的分析是一個教師的教學(xué)水平的重要標(biāo)志,同樣的一個教師對教材的處理各不相同,當(dāng)然所得的結(jié)果也各不相同,我們評一節(jié)課好壞,同時也要關(guān)注這堂課的前述及后續(xù),只有知道前后的內(nèi)容,才能把握上課之人想法,教學(xué)思路,處理教材的能力,我認(rèn)為這樣的處理比較有邏輯性,能夠幫學(xué)生梳理知識,使學(xué)生對知識的結(jié)構(gòu)比較清晰,符合建構(gòu)主義觀點。這對高考復(fù)習(xí)內(nèi)容較多的情況下更容易幫助學(xué)生的理解,體現(xiàn)上課老師對教材具有較高的處理水平。)
引入貼近生活
數(shù)學(xué)知識通常被學(xué)生認(rèn)為是最沒用的,枯燥乏味的`,原因是學(xué)生在實際生活中的問題很少能夠和數(shù)學(xué)聯(lián)系起來,而通常這樣的聯(lián)系確定很難尋找,現(xiàn)在的新教材就加強(qiáng)了這一方面的聯(lián)系,這堂課殷老師就以是實際生活中常見的照鏡子一事引入,這里我覺點有兩個地方比較不錯:
。1)將數(shù)學(xué)知識和實際聯(lián)系起來,因此說聯(lián)系還是有的,主要我們沒有仔細(xì)體會,沒有這種思維習(xí)慣,這樣有聯(lián)系的問題學(xué)生就感興趣,自然投入更多了;
。2)更為重要的是,這個引入不但引出了主題,還成功地解決了難點(抽象思維能力),如果是直接給出問題,學(xué)生可能不會想到結(jié)論是什么,但是由鏡子引入,學(xué)生就很容易理解為什么函數(shù)具有周期性,為接下來從函數(shù)表達(dá)式上來分析埋下了墊腳石。對于問題情境的設(shè)置恰當(dāng)與否,決定了能否激發(fā)學(xué)生的求知欲望,能否積極主動地參與到課堂教學(xué)中。
可改進(jìn)之處:對于照鏡子問題,在實際生活同時用兩面鏡子,可能不多,因此學(xué)生要推斷也只憑想象再結(jié)合物理知識,可能有學(xué)生想出來,那么他對這一問題的理解就憑老師的講解,還是存有疑惑,如果能現(xiàn)實操作,理解會更深,當(dāng)然不可能真的取來兩面大鏡子,我們可借助于“幾何畫板”數(shù)學(xué)教學(xué)軟件,它對于對稱問題,操作簡單,下面是本人做的圖片:
(三)問題設(shè)計巧妙
函數(shù)f(x)滿足
。1)是偶函數(shù)
。2)關(guān)于x=a對稱
、诤瘮(shù)f(x)滿足
(1)是奇函數(shù)
。2)關(guān)于x=a對稱
、酆瘮(shù)f(x)滿足
(1)是偶函數(shù)
。2)關(guān)于(a,0)對稱
④函數(shù)f(x)滿足
。1)是奇函數(shù)
。2)關(guān)于(a,0)對稱
⑤函數(shù)f(x)滿足
。1)關(guān)于x=b對稱
。2)關(guān)于x=a對稱
⑥函數(shù)f(x)滿足
。1)關(guān)于(a,0)對稱
(2)關(guān)于(b,0)對稱
、吆瘮(shù)f(x)滿足
(1)關(guān)于x=a對稱
。2)關(guān)于(b,0)對稱
題組、變式訓(xùn)練是提高學(xué)生思維能力,分析問題解決問題能力的常用方法
。1)學(xué)生能通過辨析達(dá)到對問題真正理解,對于突破難點起關(guān)鍵作用。
。2)通過一連串的結(jié)論,使學(xué)生在以后拿到類似的問題,會引起重視,究竟是其中哪一種。
同時這里的問題設(shè)計遵循了由易到難,特殊到一般的過程,這和學(xué)生的思維認(rèn)識規(guī)律相符合。
可改進(jìn)之處:對于這類問題,當(dāng)然有必要讓學(xué)生理解,對于一連串問題的理解經(jīng)過思考和老師的分析是可以理解但是學(xué)生的抽象思維能力還是有待于提高的,到最后可能在頭腦里的印象還是比較模糊了,誰是誰非。⑤⑥⑦三個例子均可讓學(xué)生自己來演練,以便讓每個學(xué)生有獨立思考的機(jī)會。以提高學(xué)生獨立解決問題的能力,和真正檢測學(xué)生對剛才問題的理解程度。
(四)善于捕捉歸納
在教學(xué)中處處留心,總能發(fā)現(xiàn)點什么,對于平時的練習(xí)也是一樣,通過平時作問題,從問題中發(fā)現(xiàn)規(guī)律,進(jìn)行提練、歸納。這節(jié)課的問題設(shè)計來自殷老師平時的留心觀察,這一點確實提醒我們這些年青教師,要善于觀察、思考、發(fā)現(xiàn)問題,總結(jié)規(guī)律。
。ㄎ澹┓治鐾笍匾锥
課堂45分鐘的效率如何是學(xué)生學(xué)好每一門課程的關(guān)鍵,教師分析有沒有到位,直接影響著學(xué)生的聽課效率,講得多并不是好事,講少了怕學(xué)生聽不懂,這是很多新教師關(guān)心的問題,老教師上課時知道講到哪就夠了,知道學(xué)生在哪兒可能有疑惑,就重點講解,有些地方一帶而過,這節(jié)課很多地方分析的非常清楚,比如在講解,關(guān)于直線對稱和點對稱時
求表達(dá)式,他這樣講解f(x)關(guān)于x=a對稱,為什么會f(x)=f(2a-x)
。1)兩點關(guān)于x軸對稱,縱坐標(biāo)(函數(shù)值y)沒變,所以f()=f()(f()表示函數(shù)值)
(2)橫坐標(biāo)原來為x,對稱后變了,由中點坐標(biāo)公式得,x1=2a-x,所以f(x)=f(2a-x),講解關(guān)于點(a,0)對稱時求表達(dá)式,由于縱坐標(biāo)變?yōu)樵瓉硐喾磾?shù),所以f()=一f(),同樣橫坐標(biāo)也可以由中點公式得2a-x,所以f(x)=一f(2a-x),分析得很清楚。
(六)暴露學(xué)生思維
本節(jié)課應(yīng)該說學(xué)生的思維還是比較活躍的,在老師的幫助下,學(xué)生表現(xiàn)比較積極、投入,課堂氣氛活躍,學(xué)生能夠根據(jù)自己的理解提出方案,對于問題的解答反映還是比較快的,但是也不排除有個別學(xué)生可能由于問題的抽象性,對于問題的本質(zhì)缺乏充分的認(rèn)識及自身理解水平的問題,對于問題的下一步是什么,如何思考沒有想法。
可改進(jìn)建議:由于課堂容量較大,教師可能考慮到時間的問題,對于后幾個問題沒有讓學(xué)生有充分的時間思考,有些思維慢,或理解不夠的學(xué)生可能跟不上,在下面沒有反應(yīng),建議教師事先出張學(xué)案,將要研究的問題羅列出一張?zhí)峋V,讓學(xué)生在課前去思考,這樣上課的聽課效率可能會更好。
初中數(shù)學(xué)教案4
教學(xué)目的
1.通過對多個實際問題的分析,使學(xué)生體會到一元一次方程作為實際問題的數(shù)學(xué)模型的作用。
2.使學(xué)生會列一元一次方程解決一些簡單的應(yīng)用題。
3.會判斷一個數(shù)是不是某個方程的解。
重點、難點
1.重點:會列一元一次方程解決一些簡單的應(yīng)用題。
2.難點:弄清題意,找出“相等關(guān)系”。
教學(xué)過程
一、復(fù)習(xí)提問
一本筆記本1.2元。小紅有6元錢,那么她最多能買到幾本這樣的筆記本呢?
解:設(shè)小紅能買到工本筆記本,那么根據(jù)題意,得1.2x=6
因為1.2×5=6,所以小紅能買到5本筆記本。
二、新授
問題1:某校初中一年級328名 師生乘車外出春游,已有2輛校車可以乘坐64人,還需租用44座的客車多少輛?(讓學(xué)生思考后,回答,教師再作講評)
算術(shù)法:(328-64)÷44=264÷44=6(輛)
列方程:設(shè)需要租用x輛客車,可得44x+64=328
解這個方程,就能得到所求的結(jié)果。
問:你會解這個方程嗎?試試看?
問題2:在課外活動中,張老師發(fā)現(xiàn)同學(xué)們的年齡大多是13歲,就問同學(xué):“我今年45歲,幾年以后你們的年齡是我年齡的三分之一?”
通過分析,列出方程:13+x=(45+x)
問:你會解這個方程嗎?你能否從小敏同學(xué)的解法中得到啟發(fā)?
把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=×48=16,因為左邊=右邊,所以x=3就是這個方程的解。
這種通過試驗的'方法得出方程的解,這也是一種基本的數(shù)學(xué)思想方法。也可以據(jù)此檢驗一下一個數(shù)是不是方程的解。
問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?動手試一試,大家發(fā)現(xiàn)了什么問題?
同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數(shù),該從何試起?如何試驗根本無法人手,又該怎么辦?
三、鞏固練習(xí)
教科書第3頁練習(xí)1、2。
四、小結(jié)
本節(jié)課我們主要學(xué)習(xí)了怎樣列方程解應(yīng)用題的方法,解決一些實際問題。談?wù)勀愕膶W(xué)習(xí)體會。
五、作業(yè)
教科書第3頁,習(xí)題6.1第1、3題。
初中數(shù)學(xué)教案5
一、教學(xué)目標(biāo)
1、了解二次根式的意義;
2、掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;
3、掌握二次根式的性質(zhì)和,并能靈活應(yīng)用;
4、通過二次根式的計算培養(yǎng)學(xué)生的'邏輯思維能力;
5、通過二次根式性質(zhì)和的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美。
二、教學(xué)重點和難點
重點:
。1)二次根的意義;
。2)二次根式中字母的.取值范圍。
難點:確定二次根式中字母的取值范圍。
三、教學(xué)方法
啟發(fā)式、講練結(jié)合。
四、教學(xué)過程
。ㄒ唬⿵(fù)習(xí)提問
1、什么叫平方根、算術(shù)平方根?
2、說出下列各式的意義,并計算
。ǘ┮胄抡n
新課:二次根式
定義:式子叫做二次根式。
對于請同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):
(1)式子只有在條件a≥0時才叫二次根式,是二次根式嗎?呢?
若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分。
(2)是二次根式,而,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次
根式指的是某種式子的“外在形態(tài)”。請學(xué)生舉出幾個二次根式的例子,并說明為什么是二次根式。下面例題根據(jù)二次根式定義,由學(xué)生分析、回答。
例1當(dāng)a為實數(shù)時,下列各式中哪些是二次根式?
例2 x是怎樣的實數(shù)時,式子在實數(shù)范圍有意義?
解:略。
說明:這個問題實質(zhì)上是在x是什么數(shù)時,x—3是非負(fù)數(shù),式子有意義。
例3當(dāng)字母取何值時,下列各式為二次根式:
分析:由二次根式的定義,被開方數(shù)必須是非負(fù)數(shù),把問題轉(zhuǎn)化為解不等式。
解:(1)∵a、b為任意實數(shù)時,都有a2+b2≥0,∴當(dāng)a、b為任意實數(shù)時,是二次根式。
。2)—3x≥0,x≤0,即x≤0時,是二次根式。
。3),且x≠0,∴x>0,當(dāng)x>0時,是二次根式。
(4),即,故x—2≥0且x—2≠0,∴x>2。當(dāng)x>2時,是二次根式。
例4下列各式是二次根式,求式子中的字母所滿足的條件:
分析:這個例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義。即:只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零。
解:(1)由2a+3≥0,得。
(2)由,得3a—1>0,解得。
。3)由于x取任何實數(shù)時都有|x|≥0,因此|x|+0.1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實數(shù)。
。4)由—b2≥0得b2≤0,只有當(dāng)b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0。
初中數(shù)學(xué)教案6
教學(xué)目標(biāo):
(1)能夠根據(jù)實際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。
(2)注重學(xué)生參與,聯(lián)系實際,豐富學(xué)生的感性認(rèn)識,培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣
重點難點:
能夠根據(jù)實際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。
教學(xué)過程:
一、試一試
1.設(shè)矩形花圃的垂直于墻的一邊AB的長為xm,先取x的一些值,算出矩形的另一邊BC的長,進(jìn)而得出矩形的面積ym2.試將計算結(jié)果填寫在下表的空格中,
2.x的值是否可以任意取?有限定范圍嗎?
3.我們發(fā)現(xiàn),當(dāng)AB的長(x)確定后,矩形的面積(y)也隨之確定, y是x的函數(shù),試寫出這個函數(shù)的關(guān)系式,
對于1.,可讓學(xué)生根據(jù)表中給出的AB的長,填出相應(yīng)的BC的長和面積,然后引導(dǎo)學(xué)生觀察表格中數(shù)據(jù)的變化情況,提出問題:(1)從所填表格中,你能發(fā)現(xiàn)什么?(2)對前面提出的問題的解答能作出什么猜想?讓學(xué)生思考、交流、發(fā)表意見,達(dá)成共識:當(dāng)AB的長為5cm,BC的長為10m時,圍成的矩形面積最大;最大面積為50m2。 對于2,可讓學(xué)生分組討論、交流,然后各組派代表發(fā)表意見。形成共識,x的值不可以任意取,有限定范圍,其范圍是0 <x <10。 對于3,教師可提出問題,(1)當(dāng)AB=xm時,BC長等于多少m?(2)面積y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函數(shù)關(guān)系式.
二、提出問題
某商店將每件進(jìn)價為8元的某種商品按每件10元出售,一天可銷出約100件.該店想通過降低售價、增加銷售量的.辦法來提高利潤,經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品單價每降低0.1元,其銷售量可增加10件。將這種商品的售價降低多少時,能使銷售利潤最大? 在這個問題中,可提出如下問題供學(xué)生思考并回答:
1.商品的利潤與售價、進(jìn)價以及銷售量之間有什么關(guān)系?
[利潤=(售價-進(jìn)價)×銷售量]
2.如果不降低售價,該商品每件利潤是多少元?一天總的利潤是多少元?
[10-8=2(元),(10-8)×100=200(元)]
3.若每件商品降價x元,則每件商品的利潤是多少元?一天可銷
售約多少件商品?
[(10-8-x);(100+100x)]
4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,
[x的值不能任意取,其范圍是0≤x≤2]
5.若設(shè)該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。
[y=(10-8-x) (100+100x)(0≤x≤2)]
將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:
y=-2x2+20x(0<x<10)……………………………(1) 將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為: y=-100x2+100x+20D (0≤x≤2)……………………(2)
三、觀察;概括
1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出以下問題讓學(xué)生思考回答;
(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個?
(各有1個)
(2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式? (分別是二次多項式)
(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點?
(都是用自變量的二次多項式來表示的)
(4)本章導(dǎo)圖中的問題以及P1頁的問題2有什么共同特點? 讓學(xué)生討論、交流,發(fā)表意見,歸結(jié)為:自變量x為何值時,函數(shù)y取得最大值。
2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.
四、課堂練習(xí)
1.(口答)下列函數(shù)中,哪些是二次函數(shù)?
(1)y=5x+1 (2)y=4x2-1
(3)y=2x3-3x2 (4)y=5x4-3x+1
2.P3練習(xí)第1,2題。
五、小結(jié)
1.請敘述二次函數(shù)的定義.
2,許多實際問題可以轉(zhuǎn)化為二次函數(shù)來解決,請你聯(lián)系生活實際,編一道二次函數(shù)應(yīng)用題,并寫出函數(shù)關(guān)系式。
六、作業(yè):略
初中數(shù)學(xué)教案7
一、教材的地位與作用
《二元一次方程》是九年義務(wù)教育人教版教材七年級下冊第四章《二元一次方程組》的第一節(jié)。在此之前學(xué)生已經(jīng)學(xué)習(xí)了一元一次方程,這為本節(jié)的學(xué)習(xí)起了鋪墊的作用。本節(jié)內(nèi)容是二元一次方程的起始部分,因此,在本章的教學(xué)中,起著承上啟下的地位。
二、教學(xué)目標(biāo)
(一)知識與技能:
1.了解二元一次方程概念;
2.了解二元一次方程的解的概念和解的不唯一性;
3.會將一個二元一次方程變形成用關(guān)于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式。
(二)數(shù)學(xué)思考:
體會學(xué)習(xí)二元一次方程的必要性,學(xué)會獨立思考,體會數(shù)學(xué)的轉(zhuǎn)化思想和主元思想。
(三)問題解決:
初步學(xué)會利用二元一次方程來解決實際問題,感受二元一次方程解的不唯一性。獲得求二元一次方程解的思路方法。
(四)情感態(tài)度:
培養(yǎng)學(xué)生發(fā)現(xiàn)意識和能力,使其具有強(qiáng)烈的好奇心和求知欲。
三、教學(xué)重點與難點
教學(xué)重點:二元一次方程及其解的概念。
教學(xué)難點:二元一次方程的概念里“含未知數(shù)的項的次數(shù)”的理解;把一個二元一次方程變形成用關(guān)于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式。
四、教法與學(xué)法分析
教法:情境教學(xué)法、比較教學(xué)法、閱讀教學(xué)法。
學(xué)法:閱讀、比較、探究的學(xué)習(xí)方式。
五、教學(xué)過程
1.創(chuàng)設(shè)情境,引入新課
從學(xué)生熟悉的姚明受傷事件引入。
師:火箭隊最近取得了20連勝,姚明參加了前面的12場比賽,是球隊的頂梁柱。
。1)連勝的第12場,火箭對公牛,在這場比賽中,姚明得了12分,其中罰球得了2分,你知道姚明投中了幾個兩分球?(本場比賽姚明沒投中三分球)師:能用方程解決嗎?列出來的方程是什么方程?
。2)連勝的第1場,火箭對勇士,在這場比賽中,姚明得了36分,你知道姚明投中了幾個兩分球,罰進(jìn)了幾個球嗎?(罰進(jìn)1球得1分,本場比賽姚明沒投中三分球)師:這個問題能用一元一次方程解決嗎?,你能列出方程嗎?
設(shè)姚明投進(jìn)了x個兩分球,罰進(jìn)了y個球,可列出方程。
。3)在雄鹿隊與火箭隊的比賽中易建聯(lián)全場總共得了19分,其中罰球得了3分。你知道他分別投進(jìn)幾個兩分球、幾個三分球嗎?
設(shè)易建聯(lián)投進(jìn)了x個兩分球,y個三分球,可列出方程。
師:對于所列出來的三個方程,后面兩個你覺的是一元一次方程嗎?那這兩個方程有什么相同點嗎?你能給它們命一個名稱嗎?
從而揭示課題。
(設(shè)計意圖:第一個問題主要是讓學(xué)生體會一元一次方程是解決實際問題的數(shù)學(xué)模型,從而回顧一元一次方程的.概念;第二、三問題設(shè)置的主要目的是讓學(xué)生體會到當(dāng)實際問題不能用一元一次方程來解決的時候,我們可以試著列出二元一次方程,滲透方程模型的通用性。另外,數(shù)學(xué)來源于生活,又應(yīng)用于生活,通過創(chuàng)設(shè)輕松的問題情境,點燃學(xué)習(xí)新知識的“導(dǎo)火索”,引起學(xué)生的學(xué)習(xí)興趣,以“我要學(xué)”的主人翁姿態(tài)投入學(xué)習(xí),而且“會學(xué)”“樂學(xué)”。)
2.探索交流,汲取新知
概念思辨,歸納二元一次方程的特征
師:那到底什么叫二元一次方程?(學(xué)生思考后回答)
師:翻開書本,請同學(xué)們把這個概念劃起來,想一想,你覺得和我們自己歸納出來的概念有什么區(qū)別嗎?(同學(xué)們思考后回答)
師:根據(jù)概念,你覺得二元一次方程應(yīng)具備哪幾個特征?
活動:你自己構(gòu)造一個二元一次方程。
快速判斷:下列式子中哪些是二元一次方程?
、賦2+y=0②y=2x+
4③2x+1=2x ④ab+b=4
。ㄔO(shè)計意圖:這一環(huán)節(jié)是本課設(shè)計的重點,為加深學(xué)生對“含有未知數(shù)的項的次數(shù)”的內(nèi)涵的理解,我采取的是閱讀書本中二元一次方程的概念,形成學(xué)生的認(rèn)知沖突,激發(fā)學(xué)生對“項的次數(shù)”的思考,進(jìn)而完善學(xué)生對二元一次方程概念的理解,通過學(xué)生自己舉例子的活動去把“項的次數(shù)”形象化。)
二元一次方程解的概念
師:前面列的兩個方程2x+y=36,2x+3y=16真的是二元一次方程嗎?通過方程2x+3y=16,你知道易建聯(lián)可能投中幾個兩分球,幾個三分球嗎?
師:你是怎么考慮的?(讓學(xué)生說說他是如何得到x和y的值的,怎么證明自己的這對未知數(shù)的取值是對的)利用一個學(xué)生合理的解釋,引導(dǎo)學(xué)生類比一元一次方程的解的概念,讓學(xué)生歸納出二元一次方程的解的概念及其記法。(學(xué)生看書本上的記法)
使二元一次方程兩邊的值相等的一對未知數(shù)的值,叫做二元一次方程的一個解。(設(shè)計意圖:通過引導(dǎo)學(xué)生自主取值,猜x和y的值,從而更深刻的體會二元一次方程解的本質(zhì):使方程左右兩邊相等的一對未知數(shù)的取值。引導(dǎo)學(xué)生看書本,目的是讓學(xué)生在記法上體會“一對未知數(shù)的取值”的真正含義。)
二元一次方程解的不唯一性
對于2x+3y=16,你覺得這個方程還有其它的解嗎?你能試著寫幾個嗎?師:這些解你們是如何算出來的?
(設(shè)計意圖:設(shè)計此環(huán)節(jié),目的有三個:首先,是讓學(xué)生學(xué)會如何檢驗一對未知數(shù)的取值是二元一次方程的解;其次是讓學(xué)生體會到二元一次方程的解的不唯一性;最后讓學(xué)生感受如何得到一個正確的解:只要取定一個未知數(shù)的取值,就可以代入方程算出另一個未知數(shù)的值,這也就是求二元一次方程的解的方法。)如何去求二元一次方程的解
例:已知方程3x+2y=10,(1)當(dāng)x=2時,求所對應(yīng)的y的值;
。2)取一個你自己喜歡的數(shù)作為x的值,求所對應(yīng)的y的值;
。3)用含x的代數(shù)式表示y;
。4)用含y的代數(shù)式表示x;
。5)當(dāng)x=負(fù)2,0時,所對應(yīng)的y的值是多少?
。6)寫出方程3x+2y=10的三個解.
(設(shè)計意圖:此處設(shè)計主要是想讓學(xué)生形成求二元一次方程的解的一般方法,先讓學(xué)生展示他們的思維過程,再從他們解一元一次方程的重復(fù)步驟中提煉出用一個未知數(shù)的代數(shù)式表示另一個未知數(shù),然后把它與原方程比較,把一個未知數(shù)的值代入哪一個方程計算會更簡單,形成“正遷移”,引導(dǎo)學(xué)生體會“用關(guān)于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)”的過程,實質(zhì)是解一個關(guān)于y的一元一次方程,滲透數(shù)學(xué)的主元思想。以此突破本節(jié)課的難點。)
大顯身手:
課內(nèi)練習(xí)第2題
梳理知識,課堂升華
本節(jié)課你有收獲嗎?能和大家說說你的感想嗎?
3.作業(yè)布置
必做題:書本作業(yè)題1、2、3、4。
選做題:書本作業(yè)題5、6。
設(shè)計說明
本節(jié)授課內(nèi)容屬于概念課教學(xué)。數(shù)學(xué)學(xué)科的內(nèi)容有其固有的組成規(guī)律和邏輯結(jié)構(gòu),它總是由一些最基本的數(shù)學(xué)概念作為核心和邏輯起點,形成系統(tǒng)的數(shù)學(xué)知識,所以數(shù)學(xué)概念是數(shù)學(xué)課程的核心。只有真正理解數(shù)學(xué)概念,才能理解數(shù)學(xué)。二元一次方程作為初中階段接觸的第二類方程,形成概念并不難,關(guān)鍵如何理解它的概念,因此本節(jié)課采用先讓同學(xué)自己試著下定義,然后與教材中的完整定義相互比較,發(fā)現(xiàn)不同點,進(jìn)而理解“含有未知數(shù)的項的次數(shù)都是一次”這句話的內(nèi)涵。在二元一次方程的解的教學(xué)過程中,采用的是讓學(xué)生體會“一個解、不止一個解、無數(shù)個解”的漸進(jìn)過程,感受到用一個二元一次方程并不能求出一對確定的未知數(shù)的取值,從而讓學(xué)生產(chǎn)生有后續(xù)學(xué)習(xí)的愿望。
在講授用含一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的時候,采用“特殊、一般、特殊”的教學(xué)流程,以期突破難點。首先拋出問題“這幾個解你是如何求的”,此時注意的聚焦點是二元一次方程;其次學(xué)生歸納先定一個未知數(shù)的取值,代入原方程求另一個未知數(shù)的值,此時注意的聚焦點是一元一次方程;然后教師引導(dǎo)回到二元一次方程,假如x是一個常數(shù),那么這個方程可以看成是一個關(guān)于誰的一元一次方程,此時注意的聚焦點是原來的二元一次方程;最后代入求值,此時注意的聚焦點是等號右邊的那個算式,體會“用含一個未知數(shù)的代數(shù)式表示另一個未知數(shù)”在求值過程中的簡潔性,強(qiáng)化這種代數(shù)形式。另外,在引導(dǎo)學(xué)生推導(dǎo)“用含一個未知數(shù)的代數(shù)式表示另一個未知數(shù)”的過程中,滲透數(shù)學(xué)的主元思想和轉(zhuǎn)化思想。
初中數(shù)學(xué)教案8
一、教學(xué)目標(biāo):
1.知識目標(biāo):
①能準(zhǔn)確理解絕對值的幾何意義和代數(shù)意義。
、谀軠(zhǔn)確熟練地求一個有理數(shù)的絕對值。
、凼箤W(xué)生知道絕對值是一個非負(fù)數(shù),能更深刻地理解相反數(shù)的概念。
2.能力目標(biāo):
、俪醪脚囵B(yǎng)學(xué)生觀察、分析、歸納和概括的思維能力。
、诔醪脚囵B(yǎng)學(xué)生由抽象到具體再到抽象的思維能力。
3.情感目標(biāo):
、偻ㄟ^向?qū)W生滲透數(shù)形結(jié)合思想和分類討論的思想,讓學(xué)生領(lǐng)略到數(shù)學(xué)的奧妙,從而激起他們的好奇心和求知欲望。
、谕ㄟ^課堂上生動、活潑和愉快、輕松地學(xué)習(xí),使學(xué)生感受到學(xué)習(xí)數(shù)學(xué)的快樂,從而增強(qiáng)他們的自信心。
二、教學(xué)重點和難點
教學(xué)重點:絕對值的幾何意義和代數(shù)意義,以及求一個數(shù)的絕對值。
教學(xué)難點:絕對值定義的得出、意義的理解及求一個負(fù)數(shù)的絕對值。
三、教學(xué)方法
啟發(fā)引導(dǎo)式、討論式和談話法
四、教學(xué)過程
。ㄒ唬⿵(fù)習(xí)提問
問題:相反數(shù)6與-6在數(shù)軸上與原點的距離各是多少?兩個相反數(shù)在數(shù)軸上的點有什么特征?
。ǘ┬率
1.引入
結(jié)合教材P63圖2-11和復(fù)習(xí)問題,講解6與-6的絕對值的意義。
2.數(shù)a的絕對值的意義
、賻缀我饬x
一個數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的.點到原點的距離。數(shù)a的絕對值記作|a|.
舉例說明數(shù)a的絕對值的幾何意義。(按教材P63的倒數(shù)第二段進(jìn)行講解。)
強(qiáng)調(diào):表示0的點與原點的距離是0,所以|0|=0.
指出:表示“距離”的數(shù)是非負(fù)數(shù),所以絕對值是一個非負(fù)數(shù)。
②代數(shù)意義
把有理數(shù)分成正數(shù)、零、負(fù)數(shù),根據(jù)絕對值的幾何意義可以得出絕對值的代數(shù)意義:一個正數(shù)的絕對值是它本身,一個負(fù)數(shù)的絕對值是它的相反數(shù),0的絕對值是0.
用字母a表示數(shù),則絕對值的代數(shù)意義可以表示為:
指出:絕對值的代數(shù)定義可以作為求一個數(shù)的絕對值的方法。
3.例題精講
例1.求8,-8,,-的絕對值。
按教材方法講解。
例2.計算:|2.5|+|-3|-|-3|.
解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3
例3.已知一個數(shù)的絕對值等于2,求這個數(shù)。
解:∵|2|=2,|-2|=2
∴這個數(shù)是2或-2.
五、鞏固練習(xí)
練習(xí)一:教材P641、2,P66習(xí)題2.4A組1、2.
練習(xí)二:
1.絕對值小于4的整數(shù)是____.
2.絕對值最小的數(shù)是____.
3.已知|2x-1|+|y-2|=0,求代數(shù)式3x2y的值。
六、歸納小結(jié)
本節(jié)課從幾何與代數(shù)兩個方面說明了絕對值的意義,由絕對值的意義可知,任何數(shù)的絕對值都是非負(fù)數(shù)。絕對值的代數(shù)意義可以作為求一個數(shù)的絕對值的方法。
七、布置作業(yè)
教材P66習(xí)題2.4A組3、4、5.
初中數(shù)學(xué)教案9
八、 板書 設(shè)計
6.2? 不等式的解集
一、1.不等式的`解集:一般地,一個含有未知數(shù)的不等式的所有的解組成這個不等式的解的集合,簡稱不等式的解集.
2.解不等式:求不等式解的過程
二、在數(shù)軸上表示不等式的解集
1. 2.
三、注意:(1)“ · ”與“ °”;(2)“左邊部分”與“右邊部分”.
初中數(shù)學(xué)教案10
一、教材分析
本節(jié)內(nèi)容是人民教育出版社出版《義務(wù)教育課程實驗教科書(五四學(xué)制)數(shù)學(xué)》(供天津用)八年級下冊第十章整式第一節(jié)整式加減第2小節(jié)整式的加減。
二、設(shè)計思想
本節(jié)內(nèi)容是學(xué)生掌握了“整式”有關(guān)概念的延展學(xué)習(xí),為后繼學(xué)習(xí)整式運算、因式分解、一元二次方程及函數(shù)知識奠定基礎(chǔ),是“數(shù)”向“式”的正式過度,具有十分重要地位。
八年級學(xué)生已具有了較強(qiáng)的數(shù)的運算技能和“合并”的意識(解一元一次方程中用)同時也具有初步的觀察、歸納、探索的技能。因此,我結(jié)合教材,立足讓每個學(xué)生都有發(fā)展的宗旨,我采用合作探究的'學(xué)習(xí)方式開展教學(xué)活動,通過設(shè)計有針對性、多樣式的問題引導(dǎo)學(xué)生,給學(xué)生提供充足的、和諧的探索空間讓學(xué)生學(xué)習(xí)。通過學(xué)習(xí)活動不但培養(yǎng)學(xué)生化簡意識,提升數(shù)學(xué)運算技能而且讓學(xué)生深刻體會到數(shù)學(xué)是解決實際問題的重要工具,增強(qiáng)應(yīng)用數(shù)學(xué)的意識。
三、教學(xué)目標(biāo):
(一)知識技能目標(biāo):
1、理解同類項的含義,并能辨別同類項。
2、掌握合并同類項的方法,熟練的合并同類項。
3、掌握整式加減運算的方法,熟練進(jìn)行運算。
。ǘ┻^程方法目標(biāo):
1、通過探究同類項定義、合并同類項的方法的活動,培養(yǎng)學(xué)生觀察、歸納、探究的能力。
2、通過合并同類項、整式加減運算的練習(xí)活動,提高學(xué)生運算技能,提升運算的準(zhǔn)確率培養(yǎng)學(xué)生化簡意識,發(fā)展學(xué)生的抽象概括能力。
3、通過研究引例、探究例1的活動,發(fā)展學(xué)生的形象思維,初步培養(yǎng)學(xué)生的符號感。
。ㄈ┣楦袃r值目標(biāo):
1、通過交流協(xié)商、分組探究,培養(yǎng)學(xué)生合作交流的意識和敢于探索未知問題的精神。
2、通過學(xué)習(xí)活動培養(yǎng)學(xué)生科學(xué)、嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。
四、教學(xué)重、難點:
合并同類項
五、教學(xué)關(guān)鍵:
同類項的概念
六、教學(xué)準(zhǔn)備:
教師:
1、篩選數(shù)學(xué)題目,精心設(shè)置問題情境。
2、制作大小不等的兩個長方體紙盒實物模型,并能展開。
3、設(shè)計多媒體教學(xué)課件。(要凸顯①單項式中系數(shù)、字母、指數(shù)的特征②長方體紙盒立體圖、展開圖。)
學(xué)生:
1、復(fù)習(xí)有關(guān)單項式的概念、有理數(shù)四則運算及去括號的法則)
2、每小組制作大小不等的兩個長方體紙盒模型。
初中數(shù)學(xué)教案11
教學(xué)目標(biāo):
1、知識與技能:通過對多種實際問題的分析,感受方程作為刻畫現(xiàn)實世界有效模型的意義。
2、過程與方法:通過觀察,歸納一元一次方程的概念。
3、情感與態(tài)度:體驗數(shù)學(xué)與日常生活密切相關(guān),認(rèn)識到許多實際問題可以用數(shù)學(xué)方法解決。
教學(xué)重點:歸納一元次方程的概念
教學(xué)難點:感受方程作為刻畫現(xiàn)實世界有效模型的意義.
教學(xué)過程:
一、情景導(dǎo)入:
我能猜出你們的年齡,相信嗎?
只要任何一個同學(xué)回答我一個問題,我就能馬上猜到他的年齡是多少歲,我們來試試吧.
問:你的年齡乘以2加3等于多少?
學(xué)生說出結(jié)果,教師猜測年齡,并問:你們知道我是怎么做的嗎?
學(xué)生討論并回答
二、知識探究:
1、方程的教學(xué)(投影演示)
小彬和小明也在進(jìn)行猜年齡游戲,我們來看一看。
找出這道題中的`等量關(guān)系,列出方程.
大家觀察,這兩個式子有什么特點。
討論并回答:什么是方程?方程有哪些特點?
2、 判斷下列式子是不是方程?
(1)X+2=3(是)(2)X+3Y=6(是)
。3)3M-6(不是)(4)1+2=3(不是)
。5)X+3>5(不是)(6)Y-12=5(是)
三、合作交流
1、如果告訴我們一些實際生活中的問題,大家能夠自己列出方程嗎?(投影演示)
情景一:小穎種了一株樹苗,開始時樹苗高為40厘米,栽種后每周樹苗長高約15厘米,大約幾周后樹苗長高到1米?
你能找出題中的等量關(guān)系嗎?怎樣列方程?由此題你們想到了些什么?
情景二:第五次全國人口普查統(tǒng)計數(shù)據(jù)(20xx年3月28日新華社公布)
截至20xx年11月1日0時,全國每10萬人中具有大學(xué)文化程度的人數(shù)為3611人,比1990年7月1日0時增長了153.94%
1990年6月底每10萬人中約有多少人具有大學(xué)文化程度?情景三:西湖中學(xué)的體育場的足球場,其周長為200米,長和寬之差為12米,這個足球場的長和寬分別是多少米?
下面是剛才根據(jù)幾道情景題所列的方程,分析下列方程有何共同點?
2X–5=21
40+15X=100
X(1+153.94﹪)=3611
2[X+(X+12)]=200
2[Y+(Y–12)]=200
在一個方程中,只含有一個未知數(shù)X(元),并且未知數(shù)的指數(shù)是1(次),這樣的方程叫一元一次方程。
問:大家剛才都已經(jīng)自己列出了方程,那個同學(xué)能夠說一下你是怎樣列出方程的,列方程應(yīng)該分為那幾步呢?
生:分組討論,回答列方程的步驟(1)找等量關(guān)系(2)設(shè)未知數(shù)(3)列方程
四、隨堂練習(xí)
1、投影趣味習(xí)題,
2、做一做
下面有兩道題,請選做一題。
。1)、請根據(jù)方程2X+3=21自己設(shè)計一道有實際背景的應(yīng)用題。
。2)、發(fā)揮你的想象,用自己的年齡編一道應(yīng)用題,并列出方程。
五、課堂小節(jié)
1、這節(jié)課你學(xué)到了什么?
2、這節(jié)課給你印象最深的是什么?
六、作業(yè):分組布置
數(shù)學(xué)教案-你今年幾歲了搜集整理
初中數(shù)學(xué)教案12
活動目標(biāo)
1、復(fù)習(xí)
7的組成,練習(xí)用數(shù)的組成、分解知識進(jìn)行7的加減運算。
2、學(xué)習(xí)
7的加減,能根據(jù)推理列算式,進(jìn)一步理解交換兩個加數(shù)的位置,得數(shù)不變的.規(guī)律活動準(zhǔn)備7以內(nèi)的數(shù)字卡片、課件、幼兒用書第1冊第47頁、鉛筆。
活動過程
1、復(fù)習(xí)7的組成,列出7的分合式。
。1)拍手對數(shù):教師拍手和幼兒拍手合起來是7下。
。2)填數(shù)活動。給7的組成填上合適的數(shù)。
2、新授7的加減法:
(1)教師演示課件出題,請幼兒列算式。先列加法,再列減法。
、"樹上飛來了1只小鳥,后來又飛來了6只小鳥,請問,現(xiàn)在書上一共有幾只小鳥?"引導(dǎo)幼兒列出加法算式1+6=7。"如果是先飛來了6只小鳥,有飛來了1只小鳥呢?"怎么列算式?6+1=7,讓幼兒發(fā)現(xiàn)將加號兩邊的數(shù)互換位置以后,總數(shù)不變。
②引導(dǎo)幼兒根據(jù)推理的方法,列出7的第一組減法算式:7—1=6 7—6=1
(2)請幼兒根據(jù)7的分合式,自己探索將7的其它幾組算式列出來,教師指導(dǎo)。
。3)利用快問快答的形式,反復(fù)練習(xí)7的加減法運算。
3、組織幼兒翻開幼兒用書,觀察圖意,填寫正確的數(shù)字或算式,鞏固7的加減法。
活動延伸
請幼兒回家以后和父母一起練習(xí)7的加減法,學(xué)習(xí)解決生活中的一些數(shù)字問題。
初中數(shù)學(xué)教案13
【教學(xué)目標(biāo)】
1進(jìn)一步認(rèn)識方程及其解的概念。
2理解一元一次方程的概念,會根據(jù)簡單數(shù)量關(guān)系列一元一次方程。 3體驗用嘗試、檢驗解一元一次方程的思想與方法。
【教學(xué)重點】
一元一次方程的概念和解法貫穿整章,因此“一元一次方程的概念”與“嘗試檢驗法”求解是本節(jié)教學(xué)的重點。
【教學(xué)難點】
用嘗試、檢驗的方法解一元一次方程的過程比較復(fù)雜,是本節(jié)教學(xué)的難點。
【學(xué)習(xí)準(zhǔn)備】
1.下面哪些式子是方程?
。1)3
(2)1;
(2)x31;
。3)3x5;
(4)2xy4;
。5)x31;
。6)3x14.
2.方程與等式有什么聯(lián)系與區(qū)別?
方程是解決實際問題的一個重要數(shù)學(xué)模型,需要我們進(jìn)一步學(xué)習(xí)研究。
【課本導(dǎo)學(xué)】
思考一閱讀并解答課本第114頁“合作學(xué)習(xí)”的三個問題,思考:
1.列方程就是根據(jù)問題中的相等關(guān)系,寫出含有未知數(shù)的等式。
。1)原價為50元的衣服,按8折銷售,售價是多少元?原價若為x元呢?
。2)你能舉例說明你對“物體在水下,水深每增加10米,物體承受的壓力就增加
(3)張明投進(jìn)x個,那么“小杰投進(jìn)的球的個數(shù)”可以怎樣表示?“3人一共投進(jìn)的球數(shù)”怎樣表示?
你是怎么理解“三人平均每人投進(jìn)14個球”這句話的?
思考二觀察你所列的方程,這些方程之間有哪些共同的特點?請思考:
1.你可以從哪些角度對這些方程進(jìn)行觀察呢?說說你的想法。
2.具有“合作學(xué)習(xí)”中所列方程一樣特點的方程叫做一元一次方程,你能說說這個名稱中“元”和“次”的含義嗎?[練習(xí)]完成課本第115頁課內(nèi)練習(xí)
1.『歸納』判斷一個方程是不是一元一次方程應(yīng)抓住哪幾個關(guān)鍵特點?
思考三閱讀課本第114頁倒數(shù)3行至第115頁正文結(jié)束,并思考下面的問題:
1.(1)如果一個數(shù)是方程有什么關(guān)系?
。2)如果一個數(shù)是方程350應(yīng)該是多少?
。3)要判斷一個數(shù)是不是方程3m?2?1?m的解,你會怎么做?2.對方程2x12
14的`解,這個數(shù)代入方程的左邊計算得到的值與14 3 1
x500的解,這個數(shù)代入方程的左邊計算得到的值10 2x12
14進(jìn)行嘗試求解時,你認(rèn)為x必須是整數(shù)嗎
x可以取21嗎20呢?x可以取10或者比10還小的值嗎?為什么?說說你的想法。
[練習(xí)]完成課本第115頁課內(nèi)練習(xí)
2.『歸納』1.檢驗一個數(shù)是不是一元一次方程的解的步驟有哪些?
2.用嘗試檢驗的方法解一元一次方程,你覺得關(guān)鍵的步驟有哪些?【盤點收獲】
【學(xué)習(xí)檢測】
1.下列說法正確的是()
。╝)x1是等式(b)x1是方程(c)方程是等式(d)等式是方程
2.下列式子中,屬于一元一次方程的是()(a)5x 1
。╞)ab8(c)1257(d)5x82x9 3
3.設(shè)某數(shù)為x,根據(jù)下列條件列出求該數(shù)的方程:
。1)某數(shù)加上1,再乘以2,得6.
。2)某數(shù)與7的和的2倍等于10.
(3)某數(shù)的5倍比某數(shù)小3.
4.某校初一年級328名師生乘車外出春游,己有2輛校車可乘坐64人,還需租用44座的客車多少輛?
設(shè)還需租用x輛,則可列出方程44x+64=328.
(1)寫出一個方程,使它的解是
2.【作業(yè)布置】略
【課后反思】
課堂教學(xué)總是在“預(yù)設(shè)”與“生成”間交融進(jìn)行,如何根據(jù)學(xué)情做好充分的預(yù)設(shè),又根據(jù)課堂生成靈活應(yīng)變,這既能反映教師的專業(yè)素養(yǎng),又能展示教師的教學(xué)功底.反芻本課,筆者認(rèn)為還有以下幾方面值得反思與改進(jìn):
1.忽略課堂“火花”,錯失追問良機(jī)
在交流對方程的共同特征探討的環(huán)節(jié),有一個同學(xué)直接說出了“一元一次方程”的名稱.【片斷實錄】
師:討論好了吧.哪個小組先來說說你們所歸納的特點.生8:這些等式都含有未知數(shù)的,用x或y來表示.師(板書):嗯,都含有未知數(shù),這個未知數(shù)呢,有的地方是x,有的地方是y.還有呢?生8:還有黑板上的所有等式都是一元一次方程.
師(驚喜):嗯,你都知道了所有的等式都是我們今天接下來要具體研究的一元一次方程,這位同學(xué)已經(jīng)預(yù)習(xí)了呢.我們看,剛才這位同學(xué)歸納了:都含有未知數(shù).那么請同學(xué)們看得更仔細(xì)一點,未知數(shù)在這里具有什么特征呢?
不難看出,筆者在這里沒有很好地抓住學(xué)生的課堂即時生成資源,用一句“嗯,……,這位同學(xué)已經(jīng)預(yù)習(xí)了呢.”輕輕帶過,仍然拉著學(xué)生回到了預(yù)設(shè)的軌道“……,請同學(xué)們看得更仔細(xì)一點,未知數(shù)在這里具有什么特征呢?”如果當(dāng)時直接問她“那么請你講講什
初中數(shù)學(xué)教案14
一、目的要求
1、使學(xué)生初步理解一次函數(shù)與正比例函數(shù)的概念。
2、使學(xué)生能夠根據(jù)實際問題中的條件,確定一次函數(shù)與正比例函數(shù)的解析式。
二、內(nèi)容分析
1、初中主要是通過幾種簡單的函數(shù)的初步介紹來學(xué)習(xí)函數(shù)的,前面三小節(jié),先學(xué)習(xí)函數(shù)的概念與表示法,這是為學(xué)習(xí)后面的幾種具體的函數(shù)作準(zhǔn)備的,從本節(jié)開始,將依次學(xué)習(xí)一次函數(shù)(包括正比例函數(shù))、二次函數(shù)與反比例函數(shù)的有關(guān)知識,大體上,每種函數(shù)是按函數(shù)的解析式、圖象及性質(zhì)這個順序講述的,通過這些具體函數(shù)的學(xué)習(xí),學(xué)生可以加深對函數(shù)意義、函數(shù)表示法的認(rèn)識,并且,結(jié)合這些內(nèi)容,學(xué)生還會逐步熟悉函數(shù)的知識及有關(guān)的數(shù)學(xué)思想方法在解決實際問題中的應(yīng)用。
2、舊教材在講幾個具體的函數(shù)時,是按先講正反比例函數(shù),后講一次、二次函數(shù)順序編排的,這是適當(dāng)照顧了學(xué)生在小學(xué)數(shù)學(xué)中學(xué)了正反比例關(guān)系的知識,注意了中小學(xué)的銜接,新教材則是安排先學(xué)習(xí)一次函數(shù),并且,把正比例函數(shù)作為一次函數(shù)的特例予以介紹,而最后才學(xué)習(xí)反比例函數(shù),為什么這樣安排呢?第一,這樣安排,比較符合學(xué)生由易到難的認(rèn)識規(guī)津,從函數(shù)角度看,一次函數(shù)的解析式、圖象與性質(zhì)都是比較簡單的,相對來說,反比例函數(shù)就要復(fù)雜一些了,特別是,反比例函數(shù)的圖象是由兩條曲線組成的,先學(xué)習(xí)反比例函數(shù)難度可能要大一些。第二,把正比例函數(shù)作為一次函數(shù)的特例介紹,既可以提高學(xué)習(xí)效益,又便于學(xué)生了解正比例函數(shù)與一次函數(shù)的關(guān)系,從而,可以更好地理解這兩種函數(shù)的概念、圖象與性質(zhì)。
3、“函數(shù)及其圖象”這一章的重點是一次函數(shù)的概念、圖象和性質(zhì),一方面,在學(xué)生初次接觸函數(shù)的有關(guān)內(nèi)容時,一定要結(jié)合具體函數(shù)進(jìn)行學(xué)習(xí),因此,全章的主要內(nèi)容,是側(cè)重在具體函數(shù)的講述上的。另一方面,在大綱規(guī)定的幾種具體函數(shù)中,一次函數(shù)是最基本的,教科書對一次函數(shù)的討論也比較全面。通過一次函數(shù)的學(xué)習(xí),學(xué)生可以對函數(shù)的研究方法有一個初步的認(rèn)識與了解,從而能更好地把握學(xué)習(xí)二次函數(shù)、反比例函數(shù)的學(xué)習(xí)方法。
三、教學(xué)過程
復(fù)習(xí)提問:
1、什么是函數(shù)?
2、函數(shù)有哪幾種表示方法?
3、舉出幾個函數(shù)的例子。
新課講解:
可以選用提問時學(xué)生舉出的例子,也可以直接采用教科書中的四個函數(shù)的例子。然后讓學(xué)生觀察這些例子(實際上均是一次函數(shù)的解析式),y=x,s=3t等。觀察時,可以按下列問題引導(dǎo)學(xué)生思考:
(1)這些式子表示的是什么關(guān)系?(在學(xué)生明確這些式子表示函數(shù)關(guān)系后,可指出,這是函數(shù)。)
(2)這些函數(shù)中的自變量是什么?函數(shù)是什么?(在學(xué)生分清后,可指出,式子中等號左邊的y與s是函數(shù),等號右邊是一個代數(shù)式,其中的字母x與t是自變量。)
(3)在這些函數(shù)式中,表示函數(shù)的自變量的式子,分別是關(guān)于自變量的什么式呢?(這題牽扯到有關(guān)整式的基本概念,表示函數(shù)的自變量的式子也就是等號右邊的式子,都是關(guān)于自變量的一次式。)
(4)x的一次式的一般形式是什么?(結(jié)合一元一次方程的有關(guān)知識,可以知道,x的一次式是kx+b(k≠0)的形式。)
由以上的'層層設(shè)問,最后給出一次函數(shù)的定義。
一般地,如果y=kx+b(k,b是常數(shù),k≠0)那么,y叫做x的一次函數(shù)。
對這個定義,要注意:
(1)x是變量,k,b是常數(shù);
(2)k≠0 (當(dāng)k=0時,式子變形成y=b的形式。b是x的0次式,y=b叫做常數(shù)函數(shù),這點,不一定向?qū)W生講述。)
由一次函數(shù)出發(fā),當(dāng)常數(shù)b=0時,一次函數(shù)kx+b(k≠0)就成為:y=kx(k是常數(shù),k≠0)我們把這樣的函數(shù)叫正比例函數(shù)。
在講述正比例函數(shù)時,首先,要注意適當(dāng)復(fù)習(xí)小學(xué)學(xué)過的正比例關(guān)系,小學(xué)數(shù)學(xué)是這樣陳述的:
兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。
寫成式子是(一定)
需指出,小學(xué)因為沒有學(xué)過負(fù)數(shù),實際的例子都是k>0的例子,對于正比例函數(shù),k也為負(fù)數(shù)。
其次,要注意引導(dǎo)學(xué)生找出一次函數(shù)與正比例函數(shù)之間的關(guān)系:正比例函數(shù)是特殊的一次函數(shù)。
課堂練習(xí):
教科書13、4節(jié)練習(xí)第1題.
初中數(shù)學(xué)教案15
教學(xué)建議
一、知識結(jié)構(gòu)
二、重點難點分析
本節(jié)教學(xué)的重點是同位角、內(nèi)錯角、同旁內(nèi)角的概念、難點為在較復(fù)雜的圖形中辨認(rèn)同位角、內(nèi)錯角、同旁內(nèi)角、掌握同位角、內(nèi)錯角、同旁內(nèi)角的相關(guān)概念是進(jìn)一步學(xué)習(xí)平行線、四邊形等后續(xù)知識的基礎(chǔ)、
(1)兩條直線被第三條直線所截,構(gòu)成八個角(簡稱“三線八角”),其中同位角4對,內(nèi)錯角2對,同旁內(nèi)角2對、
。2)準(zhǔn)確識別同位角、內(nèi)錯角、同旁內(nèi)角的關(guān)鍵,是弄清哪兩條直線被哪一條線所截、也就是說,在辨別這些角之前,要弄清哪一條直線是截線,哪兩條直線是被截線、
(3)在截線的同旁找同位角和同旁內(nèi)角,在截線的兩旁找內(nèi)錯角、要結(jié)合圖形,熟記同位角、內(nèi)錯角、同旁內(nèi)角的位置特點,比較它們的區(qū)別與聯(lián)系、
。4)在復(fù)雜的圖形中識別同位角、內(nèi)錯角、同旁內(nèi)角時,應(yīng)當(dāng)沿著角的邊將圖形補(bǔ)全,或者把多余的線暫時略去,找到三線八角的基本圖形,進(jìn)而確定這兩個角的位置關(guān)系、
三、教法建議
1、上節(jié)課討論了兩條直線相交以后所形成的四個角,這一節(jié)課是進(jìn)一步討論三條直線相交后所形成的八個角,所以在教課過程,要運用基本圖形結(jié)構(gòu)將所學(xué)的知識及其內(nèi)在聯(lián)系向?qū)W生展示、
2、在講三線八角概念時,一定要細(xì)致地分析、顧名思義,把握住兩個關(guān)鍵的環(huán)節(jié),“三條線與一條線”,盡量給出變式的.圖形,讓學(xué)生分辨清楚、
3、這節(jié)課雖然不涉及兩條直線平行后被第三條直線所截的問題,但在可能的情況下,將平行線的圖形讓學(xué)生見到,對下一步的學(xué)習(xí)很有好處,例如,平行四形中的內(nèi)錯角,學(xué)生開始接受起來有一定困難,在這一課時中,出現(xiàn)這個基本圖形,為以后學(xué)習(xí)打下基礎(chǔ)、
教學(xué)設(shè)計示例
一、素質(zhì)教育目標(biāo)
(一)知識教學(xué)點
1、理解同位角、內(nèi)錯角、同旁內(nèi)角的概念、
2、結(jié)合圖形識別同位角、內(nèi)錯角、同旁內(nèi)角、
。ǘ┠芰τ(xùn)練點
1、通過變式圖形的識圖訓(xùn)練,培養(yǎng)學(xué)生的識圖能力、
2、通過例題口答“為什么”,培養(yǎng)學(xué)生的推理能力、
。ㄈ┑掠凉B透點
從復(fù)雜圖形分解為基本圖形的過程中,滲透化繁為簡,化難為易的化歸思想;從圖形變化過程中,培養(yǎng)學(xué)生辯證唯物主義觀點、
。ㄋ模┟烙凉B透點
通過“三線八角”基本圖形,使學(xué)生認(rèn)識幾何圖形的位置美、
二、學(xué)法引導(dǎo)
1、教師教法:嘗試指導(dǎo),討論評價、變式練習(xí)、回授、
2、學(xué)生學(xué)法:主動思考,相互研討,自我歸納、
三、重點、難點、疑點及解決辦法
。ㄒ唬┥c
同位角、內(nèi)錯角、同旁內(nèi)角的概念、
。ǘ╇y點
在較復(fù)雜的圖形中辨認(rèn)同位角、內(nèi)錯角、同旁內(nèi)角、
。ㄈ┮牲c
正確理解新概念、
。ㄋ模┙鉀Q辦法
引導(dǎo)學(xué)生討論歸納三類角的特征,并以練習(xí)加以鞏固、
四、課時安排
1課時
一、教具學(xué)具準(zhǔn)備
投影儀、三角板、自制膠片、
六、師生互動活動設(shè)計
1、通過一組練習(xí)創(chuàng)設(shè)情境,復(fù)習(xí)基礎(chǔ)知識,引入新課、
2、通過學(xué)生閱讀書本,教師設(shè)問引導(dǎo),練習(xí)鞏固講授新課、
3、通過師生互答完成課堂小結(jié)、
七、教學(xué)步驟
。ㄒ唬┟鞔_目標(biāo)
使學(xué)生掌握“三線八角”,并能在圖形中進(jìn)行辨識、
(二)整體感知
以復(fù)習(xí)舊知創(chuàng)設(shè)情境引入課題,以指導(dǎo)閱讀、設(shè)計問題、小組討論學(xué)習(xí)新知,以變式練習(xí)鞏固新知、
(三)教學(xué)過程
創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入
回答下列問題:
1、如圖,∠1與∠3,∠2與∠4是什么角?它們的大小有什么關(guān)系?
2、如圖,∠1與∠2,∠l與∠4是什么角?它們有什么關(guān)系?
3、如圖,三條直線 AB 、CD 、EF 交于一點 O ,則圖中有幾對對頂角,有幾對鄰補(bǔ)角?
4、如圖,三條直線 AB 、CD 、EF 兩兩相交,則圖中有幾對對項角,有幾對鄰補(bǔ)角?
5、三條直線相交除上述兩種情況外,還有其他相交的情形嗎?
學(xué)生答后,教師出示復(fù)合投影片1,在(1、2題的)圖上添加一條直線 CD ,使 CD 與EF相交于某一點(如圖),直線 AB 、CD 都與EF相交或者說兩條直線 AB 、CD 被第三條直線EF所截,這樣圖中就構(gòu)成八個角,在這八個角中,有公共頂點的兩個角的關(guān)系前面已經(jīng)學(xué)過,今天,我們來研究那些沒有公共頂點的兩個角的關(guān)系、
【板書】 2.3同位角、內(nèi)錯角、同旁內(nèi)角
【教法說明】通過復(fù)合投影片演示了同位角、內(nèi)錯角、同旁內(nèi)角的產(chǎn)生過程,并從演示過程中看到,這些角也是與相交線有關(guān)系的角,兩條直線被第三條直線所截,是相交線的又一種情況、認(rèn)識事物間是發(fā)展變化的辯證關(guān)系、
嘗試指導(dǎo),學(xué)習(xí)新知
1、學(xué)生自己嘗試學(xué)習(xí),閱讀課本第67頁例題前的內(nèi)容、
2、設(shè)計以下問題,幫助學(xué)生正確理解概念、
。1)同位角:∠4和∠8與截線及兩條被截直線在位置上有什么特點?圖中還有其他同位角嗎?
。2)內(nèi)錯角:∠3和∠5與截線及兩條被截直線在位置上有什么特點?圖中還有其他內(nèi)錯角嗎?
。3)同旁內(nèi)角:∠4和∠5與截線及兩條被截直線在位置上有什么特點?圖中還有其他同分內(nèi)角嗎?
(4)同位角和同分內(nèi)角在位置上有什么相同點和不同點?
內(nèi)錯角和同旁內(nèi)角在位置上有什么相同點和不同點?
。5)這三類角的共同特征是什么?
3、對上述問題以小組為單位展開討論,然后學(xué)生間互相評議、
4、教師對學(xué)生討論過程中所發(fā)表的意見進(jìn)行評判,歸納總結(jié)、
在截線的同旁找同位角和同旁內(nèi)角,在截線的不同旁找內(nèi)錯角,因此在“三線八角”的圖形中的主線是截線,抓住了截線,再利用圖形結(jié)構(gòu)特征( F 、Z 、U )判斷問題就迎刃而解、
【教法說明】讓學(xué)生自己嘗試學(xué)習(xí),可以充分發(fā)揮學(xué)生的積極性、主動性和創(chuàng)造性,幾個問題的設(shè)計目的是深化教學(xué)重點,使學(xué)生看書更具有針對性,避免盲目性、學(xué)生互相評價可以增加討論的深度,教師最后評價可以統(tǒng)一學(xué)生的觀點,學(xué)生在議議評評的過程中明理、增智,培養(yǎng)了能力、
投影顯示(投影片2)
例題?如圖,直線DE、BC被直線AB所截,(1)∠l與∠2,∠1與∠3,∠1與∠4各是什么關(guān)系的角?
(2)如果∠1=∠4,那么∠1和∠2相等嗎?∠1和∠3互補(bǔ)嗎?為什么?
。劢谭ㄕf明]例題較簡單,讓學(xué)生口答,回答“為什么”只要求學(xué)生能用文字語言把主要根據(jù)說出來,講明道理即可,不必太規(guī)范,等學(xué)習(xí)證明時再嚴(yán)格訓(xùn)練、
變式訓(xùn)練,鞏固新知
投影顯示(投影片3)
【教法說明】本題是對簡單變式圖形的訓(xùn)練,以培養(yǎng)學(xué)生的識圖能力,第2題指明第三條直線是 c ,即 a 和 b 被 c 所截,如 c 和 a 被占所截,則結(jié)果截然不同,因此遇到題目先分清哪兩條直線被哪一條直線所栽,這是解題的關(guān)鍵和前提、
投影顯示(投影片4)
【教法說明】本組練習(xí)是由同位角、內(nèi)錯角和同旁內(nèi)角找出構(gòu)成它們的“三線”,或是由“三線八角”圖形判斷同位角、內(nèi)錯角、同旁內(nèi)角、這兩者都需要進(jìn)行這樣的三個步驟,一看角的頂點;二看角的邊;三看角的方位、這“三看”又離不開主線——截線的確定,讓學(xué)生知道:無論圖形的位置怎樣變動,圖形多么復(fù)雜,都要以截線為主線(不變),去解決萬變的圖形,另外遇到較復(fù)雜的圖形,也可以從分解圖形入手,把復(fù)雜圖形化為若干個基本圖形、如第2題由已知條件結(jié)合所求部分,對各個小題分別分解圖形如下:
投影顯示(投影片5)
【教法說明】學(xué)生在較復(fù)雜的圖形中,對找這一類的同位角,找這一類的內(nèi)錯角,找這一類的同旁內(nèi)角有一定困難,為此安排本組選擇題,有利于突破難點,第2題中學(xué)生對 C 、D 兩個圖形易混淆,要加強(qiáng)對比以便解決教學(xué)疑點。第3題讓學(xué)生掌握三角形中的3對同旁內(nèi)角。另外本組練習(xí)也為后面的練習(xí)打基礎(chǔ)。
投影顯示(投影片6)
【教法說明】本組題目是上組題的延伸,再次突破難點,提高學(xué)生思維的廣度與深度、學(xué)生解決此類題常常因考慮不全面而丟解,要使學(xué)生養(yǎng)成全方位多角度考慮問題的習(xí)慣,第2題以裁線為標(biāo)準(zhǔn)分類求解,分別把 AB 、BD 、EF 看成是截線找三類角,這樣既不遺漏又不重復(fù)、
。ㄋ模┛偨Y(jié)、擴(kuò)展
1、本節(jié)研究了一條直線分別和兩條直線相交,所得八個角的位置關(guān)系,掌握辨別這些角位置關(guān)系的關(guān)鍵是分清哪條線是截線,哪些線是被截直線,在截線的同旁找同位角和同旁內(nèi)角,在截線的不同旁找內(nèi)錯角,只要抓住三線中的主線——截線,就能正確識別這三類角、
2、相交直線
3、教師指著圖中的一條被截直線,問:“這條直線繞著與截線著與截線的交點旋轉(zhuǎn),當(dāng)同位角相等時,兩條被截直線是什么關(guān)系?”
【教法說明】將所學(xué)知識進(jìn)行歸納總結(jié),加強(qiáng)了知識問的聯(lián)系,充分體現(xiàn)了所學(xué)知識的系統(tǒng)性,最后用是合式小結(jié)、可使學(xué)生課后自覺地去看預(yù)習(xí),尋找答案。系統(tǒng)性,最后用懸念式小結(jié),可使學(xué)生課后自覺地去看書預(yù)習(xí),尋找答案。
八、布置作業(yè)
課本第72頁B組第4題、
【教法說明】課本練習(xí)穿插在課堂練習(xí)中完成,故只留一道提高題,讓學(xué)有余力的同學(xué)繼續(xù)探究,提高學(xué)生思維廣度
作業(yè)答案
4、答:(1)設(shè) E 是 BC 延長線上的一點,∠ A 與∠ ACD 、∠ ACE 是內(nèi)錯角,它們分別是由直線 AB 、CD 被直線 AC 截成的和直線 AB 、BE 被直線 AC 截成的。
。2)∠ B 與∠ DCE 、∠ ACE 是同位有,它們分別是由直線 AB 、CD 被直線 BE 截成的和直線 AB 、AC 被直線 BE 截成的。
【初中數(shù)學(xué)教案】相關(guān)文章:
初中數(shù)學(xué)教案04-01
初中數(shù)學(xué)教案人教版03-20
初中數(shù)學(xué)教案評語09-02
人教版初中數(shù)學(xué)教案12-29
初中數(shù)學(xué)教案14篇03-26
初中數(shù)學(xué)教案15篇12-30