因式分解教案范文匯編10篇
作為一位不辭辛勞的人民教師,通常會被要求編寫教案,借助教案可以恰當(dāng)?shù)剡x擇和運(yùn)用教學(xué)方法,調(diào)動學(xué)生學(xué)習(xí)的積極性。那么教案應(yīng)該怎么寫才合適呢?下面是小編為大家整理的因式分解教案10篇,僅供參考,歡迎大家閱讀。
因式分解教案 篇1
教學(xué)目標(biāo)
1.知識與技能
了解因式分解的意義,以及它與整式乘法的關(guān)系.
2.過程與方法
經(jīng)歷從分解因數(shù)到分解因式的類比過程,掌握因式分解的概念,感受因式分解在解決問題中的作用.
3.情感、態(tài)度與價值觀
在探索因式分解的方法的活動中,培養(yǎng)學(xué)生有條理的思考、表達(dá)與交流的能力,培養(yǎng)積極的進(jìn)取意識,體會數(shù)學(xué)知識的內(nèi)在含義與價值.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):了解因式分解的意義,感受其作用.
2.難點(diǎn):整式乘法與因式分解之間的關(guān)系.
3.關(guān)鍵:通過分解因數(shù)引入到分解因式,并進(jìn)行類比,加深理解.
教學(xué)方法
采用“激趣導(dǎo)學(xué)”的教學(xué)方法.
教學(xué)過程
一、創(chuàng)設(shè)情境,激趣導(dǎo)入
【問題牽引】
請同學(xué)們探究下面的2個問題:
問題1:720能被哪些數(shù)整除?談?wù)勀愕南敕ǎ?/p>
問題2:當(dāng)a=102,b=98時,求a2-b2的值.
二、豐富聯(lián)想,展示思維
探索:你會做下面的填空嗎?
1.ma+mb+mc=( )( );
2.x2-4=( )( );
3.x2-2xy+y2=( )2.
【師生共識】把一個多項(xiàng)式化成幾個整式的積的形式,叫做把這個多項(xiàng)式因式分解,也叫做分解因式.
三、小組活動,共同探究
【問題牽引】
。1)下列各式從左到右的變形是否為因式分解:
、伲▁+1)(x-1)=x2-1;
②a2-1+b2=(a+1)(a-1)+b2;
③7x-7=7(x-1).
。2)在下列括號里,填上適當(dāng)?shù)捻?xiàng),使等式成立.
、9x2(______)+y2=(3x+y)(_______);
、趚2-4xy+(_______)=(x-_______)2.
四、隨堂練習(xí),鞏固深化
課本練習(xí).
【探研時空】計(jì)算:993-99能被100整除嗎?
五、課堂總結(jié),發(fā)展?jié)撃?/strong>
由學(xué)生自己進(jìn)行小結(jié),教師提出如下綱目:
1.什么叫因式分解?
2.因式分解與整式運(yùn)算有何區(qū)別?
六、布置作業(yè),專題突破
選用補(bǔ)充作業(yè).
板書設(shè)計(jì)
15.4.1 因式分解
1、因式分解 例:
練習(xí):
15.4.2 提公因式法
教學(xué)目標(biāo)
1.知識與技能
能確定多項(xiàng)式各項(xiàng)的公因式,會用提公因式法把多項(xiàng)式分解因式.
2.過程與方法
使學(xué)生經(jīng)歷探索多項(xiàng)式各項(xiàng)公因式的過程,依據(jù)數(shù)學(xué)化歸思想方法進(jìn)行因式分解.
3.情感、態(tài)度與價值觀
培養(yǎng)學(xué)生分析、類比以及化歸的思想,增進(jìn)學(xué)生的合作交流意識,主動積極地積累確定公因式的初步經(jīng)驗(yàn),體會其應(yīng)用價值.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):掌握用提公因式法把多項(xiàng)式分解因式.
2.難點(diǎn):正確地確定多項(xiàng)式的最大公因式.
3.關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.
教學(xué)方法
采用“啟發(fā)式”教學(xué)方法.
教學(xué)過程
一、回顧交流,導(dǎo)入新知
【復(fù)習(xí)交流】
下列從左到右的變形是否是因式分解,為什么?
。1)2x2+4=2(x2+2); (2)2t2-3t+1= (2t3-3t2+t);
(3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my;
。5)x2-2xy+y2=(x-y)2.
問題:
1.多項(xiàng)式mn+mb中各項(xiàng)含有相同因式嗎?
2.多項(xiàng)式4x2-x和xy2-yz-y呢?
請將上述多項(xiàng)式分別寫成兩個因式的乘積的形式,并說明理由.
【教師歸納】我們把多項(xiàng)式中各項(xiàng)都有的公共的因式叫做這個多項(xiàng)式的'公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.
概念:如果一個多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個公因式提出來,從而將多項(xiàng)式化成兩個因式乘積形式,這種分解因式的方法叫做提公因式法.
二、小組合作,探究方法
【教師提問】 多項(xiàng)式4x2-8x6,16a3b2-4a3b2-8ab4各項(xiàng)的公因式是什么?
【師生共識】提公因式的方法是先確定各項(xiàng)的公因式再將多項(xiàng)式除以這個公因式得到另一個因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.
三、范例學(xué)習(xí),應(yīng)用所學(xué)
【例1】把-4x2yz-12xy2z+4xyz分解因式.
解:-4x2yz-12xy2z+4xyz
=-(4x2yz+12xy2z-4xyz)
=-4xyz(x+3y-1)
【例2】分解因式,3a2(x-y)3-4b2(y-x)2
【思路點(diǎn)撥】觀察所給多項(xiàng)式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.
解法1:3a2(x-y)3-4b2(y-x)2
=-3a2(y-x)3-4b2(y-x)2
=-[(y-x)23a2(y-x)+4b2(y-x)2]
=-(y-x)2 [3a2(y-x)+4b2]
=-(y-x)2(3a2y-3a2x+4b2)
解法2:3a2(x-y)3-4b2(y-x)2
=(x-y)23a2(x-y)-4b2(x-y)2
=(x-y)2 [3a2(x-y)-4b2]
=(x-y)2(3a2x-3a2y-4b2)
【例3】用簡便的方法計(jì)算:0.84×12+12×0.6-0.44×12.
【教師活動】引導(dǎo)學(xué)生觀察并分析怎樣計(jì)算更為簡便.
解:0.84×12+12×0.6-0.44×12
=12×(0.84+0.6-0.44)
=12×1=12.
【教師活動】在學(xué)生完全例3之后,指出例3是因式分解在計(jì)算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同?
四、隨堂練習(xí),鞏固深化
課本P167練習(xí)第1、2、3題.
【探研時空】
利用提公因式法計(jì)算:
0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69
五、課堂總結(jié),發(fā)展?jié)撃?/strong>
1.利用提公因式法因式分解,關(guān)鍵是找準(zhǔn)最大公因式.在找最大公因式時應(yīng)注意:(1)系數(shù)要找最大公約數(shù);(2)字母要找各項(xiàng)都有的;(3)指數(shù)要找最低次冪.
2.因式分解應(yīng)注意分解徹底,也就是說,分解到不能再分解為止.
六、布置作業(yè),專題突破
課本P170習(xí)題15.4第1、4(1)、6題.
板書設(shè)計(jì)
15.4.2 提公因式法
1、提公因式法 例:
練習(xí):
15.4.3 公式法(一)
教學(xué)目標(biāo)
1.知識與技能
會應(yīng)用平方差公式進(jìn)行因式分解,發(fā)展學(xué)生推理能力.
2.過程與方法
經(jīng)歷探索利用平方差公式進(jìn)行因式分解的過程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識的完整性.
3.情感、態(tài)度與價值觀
培養(yǎng)學(xué)生良好的互動交流的習(xí)慣,體會數(shù)學(xué)在實(shí)際問題中的應(yīng)用價值.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):利用平方差公式分解因式.
2.難點(diǎn):領(lǐng)會因式分解的解題步驟和分解因式的徹底性.
3.關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來.
教學(xué)方法
采用“問題解決”的教學(xué)方法,讓學(xué)生在問題的牽引下,推進(jìn)自己的思維.
教學(xué)過程
一、觀察探討,體驗(yàn)新知
【問題牽引】
請同學(xué)們計(jì)算下列各式.
。1)(a+5)(a-5); (2)(4m+3n)(4m-3n).
【學(xué)生活動】動筆計(jì)算出上面的兩道題,并踴躍上臺板演.
。1)(a+5)(a-5)=a2-52=a2-25;
。2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
【教師活動】引導(dǎo)學(xué)生完成下面的兩道題目,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.
1.分解因式:a2-25; 2.分解因式16m2-9n.
【學(xué)生活動】從逆向思維入手,很快得到下面答案:
。1)a2-25=a2-52=(a+5)(a-5).
。2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
【教師活動】引導(dǎo)學(xué)生完成a2-b2=(a+b)(a-b)的同時,導(dǎo)出課題:用平方差公式因式分解.
平方差公式:a2-b2=(a+b)(a-b).
評析:平方差公式中的字母a、b,教學(xué)中還要強(qiáng)調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項(xiàng)式、多項(xiàng)式).
二、范例學(xué)習(xí),應(yīng)用所學(xué)
【例1】把下列各式分解因式:(投影顯示或板書)
。1)x2-9y2; (2)16x4-y4;
。3)12a2x2-27b2y2; (4)(x+2y)2-(x-3y)2;
(5)m2(16x-y)+n2(y-16x).
【思路點(diǎn)撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.
【教師活動】啟發(fā)學(xué)生從平方差公式的角度進(jìn)行因式分解,請5位學(xué)生上講臺板演.
【學(xué)生活動】分四人小組,合作探究.
解:(1)x2-9y2=(x+3y)(x-3y);
。2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);
。3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);
。4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);
(5)m2(16x-y)+n2(y-16x)
=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).
三、隨堂練習(xí),鞏固深化
課本P168練習(xí)第1、2題.
【探研時空】
1.求證:當(dāng)n是正整數(shù)時,n3-n的值一定是6的倍數(shù).
2.試證兩個連續(xù)偶數(shù)的平方差能被一個奇數(shù)整除.連續(xù)偶數(shù)的平方差能被一個奇數(shù)整除.
四、課堂總結(jié),發(fā)展?jié)撃?/strong>
運(yùn)用平方差公式因式分解,首先應(yīng)注意每個公式的特征.分析多項(xiàng)式的次數(shù)和項(xiàng)數(shù),然后再確定公式.如果多項(xiàng)式是二項(xiàng)式,通常考慮應(yīng)用平方差公式;如果多項(xiàng)式中有公因式可提,應(yīng)先提取公因式,而且還要“提”得徹底,最后應(yīng)注意兩點(diǎn):一是每個因式要化簡,二是分解因式時,每個因式都要分解徹底.
五、布置作業(yè),專題突破
課本P171習(xí)題15.4第2、4(2)、11題.
板書設(shè)計(jì)
15.4.3 公式法(一)
1、平方差公式: 例:
a2-b2=(a+b)(a-b) 練習(xí):
15.4.3 公式法(二)
教學(xué)目標(biāo)
1.知識與技能
領(lǐng)會運(yùn)用完全平方公式進(jìn)行因式分解的方法,發(fā)展推理能力.
2.過程與方法
經(jīng)歷探索利用完全平方公式進(jìn)行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.
3.情感、態(tài)度與價值觀
培養(yǎng)良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):理解完全平方公式因式分解,并學(xué)會應(yīng)用.
2.難點(diǎn):靈活地應(yīng)用公式法進(jìn)行因式分解.
3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問題進(jìn)行形式上的轉(zhuǎn)化,達(dá)到能應(yīng)用公式法分解因式的目的.
教學(xué)方法
采用“自主探究”教學(xué)方法,在教師適當(dāng)指導(dǎo)下完成本節(jié)課內(nèi)容.
教學(xué)過程
一、回顧交流,導(dǎo)入新知
【問題牽引】
1.分解因式:
。1)-9x2+4y2; (2)(x+3y)2-(x-3y)2;
(3) x2-0.01y2.
因式分解教案 篇2
15.1.1 整式
教學(xué)目標(biāo)
1.單項(xiàng)式、單項(xiàng)式的定義.
2.多項(xiàng)式、多項(xiàng)式的次數(shù).
3、理解整式概念.
教學(xué)重點(diǎn)
單項(xiàng)式及多項(xiàng)式的有關(guān)概念.
教學(xué)難點(diǎn)
單項(xiàng)式及多項(xiàng)式的有關(guān)概念.
教學(xué)過程
、瘢岢鰡栴},創(chuàng)設(shè)情境
在七年級,我們已經(jīng)學(xué)習(xí)了用字母可以表示數(shù),思考下列問題
1.要表示△ABC的周長需要什么條件?要表示它的面積呢?
2.小王用七小時行駛了Skm的路程,請問他的平均速度是多少?
結(jié)論:
1、要表示△ABC的周長,需要知道它的各邊邊長.要表示△ABC的面積需要知道一條邊長和這條邊上的高.如果設(shè)BC=a,AC=b,AB=c.AB邊上的高為h,那么△ABC的周長可以表示為a+b+c;△ABC的面積可以表示為 ?c?h.
2.小王的平均速度是 .
問題:這些式子有什么特征呢?
。1)有數(shù)字、有表示數(shù)字的字母.
。2)數(shù)字與字母、字母與字母之間還有運(yùn)算符號連接.
歸納:用基本的運(yùn)算符號(運(yùn)算包括加、減、乘、除、乘方與開方)把數(shù)和表示數(shù)的字母連接起來的式子叫做代數(shù)式.
判斷上面得到的三個式子:a+b+c、 ch、 是不是代數(shù)式?(是)
代數(shù)式可以簡明地表示數(shù)量和數(shù)量的關(guān)系.今天我們就來學(xué)習(xí)和代數(shù)式有關(guān)的整式.
Ⅱ.明確和鞏固整式有關(guān)概念
。ǔ鍪就队埃
結(jié)論:(1)正方形的周長:4x.
(2)汽車走過的路程:vt.
。3)正方體有六個面,每個面都是正方形,這六個正方形全等,所以它的表面積為6a2;正方體的體積為長×寬×高,即a3.
。4)n的相反數(shù)是-n.
分析這四個數(shù)的特征.
它們符合代數(shù)式的定義.這五個式子都是數(shù)與字母或字母與字母的積,而a+b+c、 ch、 中還有和與商的運(yùn)算符號.還可以發(fā)現(xiàn)這五個代數(shù)式中字母指數(shù)各不相同,字母的個數(shù)也不盡相同.
請同學(xué)們閱讀課本P160~P161單項(xiàng)式有關(guān)概念.
根據(jù)這些定義判斷4x、vt、6a2、a3、-n、a+b+c、 ch、 這些代數(shù)式中,哪些是單項(xiàng)式?是單項(xiàng)式的,寫出它的系數(shù)和次數(shù).
結(jié)論:4x、vt、6a2、a3、-n、 ch是單項(xiàng)式.它們的系數(shù)分別是4、1、6、1、-1、 .它們的次數(shù)分別是1、2、2、3、1、2.所以4x、-n都是一次單項(xiàng)式;vt、6a2、 ch都是二次單項(xiàng)式;a3是三次單項(xiàng)式.
問題:vt中v和t的指數(shù)都是1,它不是一次單項(xiàng)式嗎?
結(jié)論:不是.根據(jù)定義,單項(xiàng)式vt中含有兩個字母,所以它的次數(shù)應(yīng)該是這兩個字母的指數(shù)的和,而不是單個字母的指數(shù),所以vt是二次單項(xiàng)式而不是一次單項(xiàng)式.
生活中不僅僅有單項(xiàng)式,像a+b+c,它不是單項(xiàng)式,和單項(xiàng)式有什么聯(lián)系呢?
寫出下列式子(出示投影)
結(jié)論:(1)t-5.(2)3x+5y+2z.
(3)三角尺的面積應(yīng)是直角三角形的面積減去圓的面積,即 ab-3.12r2.
(4)建筑面積等于四個矩形的面積之和.而右邊兩個已知矩形面積分別為3×2、4×3,所以它們的面積和是18.于是得這所住宅的建筑面積是x2+2x+18.
我們可以觀察下列代數(shù)式:
a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18.發(fā)現(xiàn)它們都是由單項(xiàng)式的和組成的式子.是多個單項(xiàng)式的和,能不能叫多項(xiàng)式?
這樣推理合情合理.請看投影,熟悉下列概念.
根據(jù)定義,我們不難得出a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18都是多項(xiàng)式.請分別指出它們的項(xiàng)和次數(shù).
a+b+c的項(xiàng)分別是a、b、c.
t-5的項(xiàng)分別是t、-5,其中-5是常數(shù)項(xiàng).
3x+5y+2z的項(xiàng)分別是3x、5y、2z.
ab-3.12r2的項(xiàng)分別是 ab、-3.12r2.
x2+2x+18的項(xiàng)分別是x2、2x、18. 找多項(xiàng)式的次數(shù)應(yīng)抓住兩條,一是找準(zhǔn)每個項(xiàng)的次數(shù),二是取每個項(xiàng)次數(shù)的最大值.根據(jù)這兩條很容易得到這五個多項(xiàng)式中前三個是一次多項(xiàng)式,后兩個是二次多項(xiàng)式.
這節(jié)課,通過探究我們得到單項(xiàng)式和多項(xiàng)式的有關(guān)概念,它們可以反映變化的世界.同時,我們也到符號的魅力所在.我們把單項(xiàng)式與多項(xiàng)式統(tǒng)稱為整式.
、螅S堂練習(xí)
1.課本P162練習(xí)
、簦n時小結(jié)
通過探究,我們了解了整式的概念.理解并掌握單項(xiàng)式、多項(xiàng)式的有關(guān)概念是本節(jié)的重點(diǎn),特別是它們的次數(shù).在現(xiàn)實(shí)情景中進(jìn)一步理解了用字母表示數(shù)的意義,發(fā)展符號感.
Ⅴ.課后作業(yè)
1.課本P165~P166習(xí)題15.1─1、5、8、9題.
2.預(yù)習(xí)“整式的加減”.
課后作業(yè):《課堂感悟與探究》
15.1.2 整式的加減(1)
教學(xué)目的.:
1、解字母表示數(shù)量關(guān)系的過程,發(fā)展符號感。
2、會進(jìn)行整式加減的運(yùn)算,并能說明其中的算理,發(fā)展有條理的思考及語言表達(dá)能力。
教學(xué)重點(diǎn):
會進(jìn)行整式加減的運(yùn)算,并能說明其中的算理。
教學(xué)難點(diǎn):
正確地去括號、合并同類項(xiàng),及符號的正確處理。
教學(xué)過程:
一、課前練習(xí):
1、填空:整式包括 和
2、單項(xiàng)式 的系數(shù)是 、次數(shù)是
3、多項(xiàng)式 是 次 項(xiàng)式,其中二次項(xiàng)
系數(shù)是 一次項(xiàng)是 ,常數(shù)項(xiàng)是
4、下列各式,是同類項(xiàng)的一組是( )
(A) 與 (B) 與 (C) 與
5、去括號后合并同類項(xiàng):
二、探索練習(xí):
1、如果用a 、b分別表示一個兩位數(shù)的十位數(shù)字和個位數(shù)字,那么這個兩位數(shù)可以表示為 交換這個兩位數(shù)的十位數(shù)字和個位數(shù)字后得到的兩位數(shù)為
這兩個兩位數(shù)的和為
2、如果用a 、b、c分別表示一個三位數(shù)的百位數(shù)字、十位數(shù)字和個位數(shù)字,那么這個三位數(shù)可以表示為 交換這個三位數(shù)的百位數(shù)字和個位數(shù)字后得到的三位數(shù)為
這兩個三位數(shù)的差為
●議一議:在上面的兩個問題中,分別涉及到了整式的什么運(yùn)算?
說說你是如何運(yùn)算的?
▲整式的加減運(yùn)算實(shí)質(zhì)就是
運(yùn)算的結(jié)果是一個多項(xiàng)式或單項(xiàng)式。
三、鞏固練習(xí):
1、填空:(1) 與 的差是
。2)、單項(xiàng)式 、 、 、 的和為
。3)如圖所示,下面為由棋子所組成的三角形,
一個三角形需六個棋子,三個三角形需
。 )個棋子,n個三角形需 個棋子
2、計(jì)算:
(1)
。2)
。3)
3、(1)求 與 的和
(2)求 與 的差
4、先化簡,再求值: 其中
四、提高練習(xí):
1、若A是五次多項(xiàng)式,B是三次多項(xiàng)式,則A+B一定是
(A)五次整式 (B)八次多項(xiàng)式
。–)三次多項(xiàng)式 (D)次數(shù)不能確定
2、足球比賽中,如果勝一場記3a分,平一場記a分,負(fù)一場
記0分,那么某隊(duì)在比賽勝5場,平3場,負(fù)2場,共積多
少分?
3、一個兩位數(shù)與把它的數(shù)字對調(diào)所成的數(shù)的和,一定能被14
整除,請證明這個結(jié)論。
4、如果關(guān)于字母x的二次多項(xiàng)式 的值與x的取值無關(guān),
試求m、n的值。
五、小結(jié):整式的加減運(yùn)算實(shí)質(zhì)就是去括號和合并同類項(xiàng)。
六、作業(yè):第8頁習(xí)題1、2、3
15.1.2整式的加減(2)
教學(xué)目標(biāo):1.會進(jìn)行整式加減的運(yùn)算,并能說明其中的算理,發(fā)展有條理的思考及其語言表達(dá)能力。
2.通過探索規(guī)律的問題,進(jìn)一步符號表示的意義,發(fā)展符號感,發(fā)展推理能力。
教學(xué)重點(diǎn):整式加減的運(yùn)算。
教學(xué)難點(diǎn):探索規(guī)律的猜想。
教學(xué)方法:嘗試練習(xí)法,討論法,歸納法。
教學(xué)用具:投影儀
教學(xué)過程:
I探索練習(xí):
擺第1個“小屋子”需要5枚棋子,擺第2個需要 枚棋子,擺第3個需要 枚棋子。按照這樣的方式繼續(xù)擺下去。
。1)擺第10個這樣的“小屋子”需要 枚棋子
(2)擺第n個這樣的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解決這個問題嗎?小組討論。
二、例題講解:
三、鞏固練習(xí):
1、計(jì)算:
。1)(14x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)
。3)x-(1-2x+x2)+(-1-x2) (4)(8xy-3x2)-5xy-2(3xy-2x2)
2、已知:A=x3-x2-1,B=x2-2,計(jì)算:(1)B-A (2)A-3B
3、列方程解應(yīng)用題:三角形三個內(nèi)角的和等于180°,如果三角形中第一個角等于第二個角的3倍,而第三個角比第二個角大15°,那么
。1)第一個角是多少度?
(2)其他兩個角各是多少度?
四、提高練習(xí):
1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,問C是什么樣的多項(xiàng)式?
2、設(shè)A=2x2-3xy+y2-x+2y,B=4x2-6xy+2y2-3x-y,若│x-2a│+
。▂+3)2=0,且B-2A=a,求A的值。
3、已知有理數(shù)a、b、c在數(shù)軸上(0為數(shù)軸原點(diǎn))的對應(yīng)點(diǎn)如圖:
試化簡:│a│-│a+b│+│c-a│+│b+c│
小 結(jié):要善于在圖形變化中發(fā)現(xiàn)規(guī)律,能熟練的對整式加減進(jìn)行運(yùn)算。
作 業(yè):課本P14習(xí)題1.3:1(2)、(3)、(6),2。
因式分解教案 篇3
整式乘除與因式分解
一.回顧知識點(diǎn)
1、主要知識回顧:
冪的運(yùn)算性質(zhì):
aman=am+n(m、n為正整數(shù))
同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.
=amn(m、n為正整數(shù))
冪的乘方,底數(shù)不變,指數(shù)相乘.
(n為正整數(shù))
積的乘方等于各因式乘方的積.
=am-n(a≠0,m、n都是正整數(shù),且m>n)
同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.
零指數(shù)冪的概念:
a0=1(a≠0)
任何一個不等于零的數(shù)的零指數(shù)冪都等于l.
負(fù)指數(shù)冪的概念:
a-p=(a≠0,p是正整數(shù))
任何一個不等于零的數(shù)的-p(p是正整數(shù))指數(shù)冪,等于這個數(shù)的p指數(shù)冪的倒數(shù).
也可表示為:(m≠0,n≠0,p為正整數(shù))
單項(xiàng)式的乘法法則:
單項(xiàng)式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對于只在一個單項(xiàng)式里含有的字母,則連同它的指數(shù)作為積的一個因式.
單項(xiàng)式與多項(xiàng)式的乘法法則:
單項(xiàng)式與多項(xiàng)式相乘,用單項(xiàng)式和多項(xiàng)式的每一項(xiàng)分別相乘,再把所得的積相加.
多項(xiàng)式與多項(xiàng)式的乘法法則:
多項(xiàng)式與多項(xiàng)式相乘,先用一個多項(xiàng)式的.每一項(xiàng)與另一個多項(xiàng)式的每一項(xiàng)相乘,再把所得的積相加.
單項(xiàng)式的除法法則:
單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式:對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式.
多項(xiàng)式除以單項(xiàng)式的法則:
多項(xiàng)式除以單項(xiàng)式,先把這個多項(xiàng)式的每一項(xiàng)除以這個單項(xiàng)式,再把所得的商相加.
2、乘法公式:
、倨椒讲罟剑(a+b)(a-b)=a2-b2
文字語言敘述:兩個數(shù)的和與這兩個數(shù)的差相乘,等于這兩個數(shù)的平方差.
②完全平方公式:(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
文字語言敘述:兩個數(shù)的和(或差)的平方等于這兩個數(shù)的平方和加上(或減去)這兩個數(shù)的積的2倍.
3、因式分解:
因式分解的定義.
把一個多項(xiàng)式化成幾個整式的乘積的形式,這種變形叫做把這個多項(xiàng)式因式分解.
掌握其定義應(yīng)注意以下幾點(diǎn):
(1)分解對象是多項(xiàng)式,分解結(jié)果必須是積的形式,且積的因式必須是整式,這三個要素缺一不可;
(2)因式分解必須是恒等變形;
(3)因式分解必須分解到每個因式都不能分解為止.
弄清因式分解與整式乘法的內(nèi)在的關(guān)系.
因式分解與整式乘法是互逆變形,因式分解是把和差化為積的形式,而整式乘法是把積化為和差的形式.
二、熟練掌握因式分解的常用方法.
1、提公因式法
(1)掌握提公因式法的概念;
(2)提公因式法的關(guān)鍵是找出公因式,公因式的構(gòu)成一般情況下有三部分:①系數(shù)一各項(xiàng)系數(shù)的最大公約數(shù);②字母——各項(xiàng)含有的相同字母;③指數(shù)——相同字母的最低次數(shù);
(3)提公因式法的步驟:第一步是找出公因式;第二步是提取公因式并確定另一因式.需注意的是,提取完公因式后,另一個因式的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)一致,這一點(diǎn)可用來檢驗(yàn)是否漏項(xiàng).
(4)注意點(diǎn):①提取公因式后各因式應(yīng)該是最簡形式,即分解到“底”;②如果多項(xiàng)式的第一項(xiàng)的系數(shù)是負(fù)的,一般要提出“-”號,使括號內(nèi)的第一項(xiàng)的系數(shù)是正的.
2、公式法
運(yùn)用公式法分解因式的實(shí)質(zhì)是把整式中的乘法公式反過來使用;
常用的公式:
、倨椒讲罟剑篴2-b2=(a+b)(a-b)
、谕耆椒焦剑篴2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
因式分解教案 篇4
學(xué)習(xí)目標(biāo)
1、了解因式分解的意義以及它與正式乘法的關(guān)系。
2、能確定多項(xiàng)式各項(xiàng)的公因式,會用提公因式法分解因式。
學(xué)習(xí)重點(diǎn):能用提公因式法分解因式。
學(xué)習(xí)難點(diǎn):確定因式的公因式。
學(xué)習(xí)關(guān)鍵,在確定多項(xiàng)式各項(xiàng)公因式時,應(yīng)抓住各項(xiàng)的公因式來提公因式。
學(xué)習(xí)過程
一.知識回顧
1、計(jì)算
(1)、n(n+1)(n-1)(2)、(a+1)(a-2)
(3)、m(a+b)(4)、2ab(x-2y+1)
二、自主學(xué)習(xí)
1、閱讀課文P72-73的內(nèi)容,并回答問題:
(1)知識點(diǎn)一:把一個多項(xiàng)式化為幾個整式的__________的形式叫做____________,也叫做把這個多項(xiàng)式__________。
(2)、知識點(diǎn)二:由m(a+b+c)=ma+mb+mc可得
ma+mb+mc=m(a+b+c)
我們來分析一下多項(xiàng)式ma+mb+mc的特點(diǎn);它的每一項(xiàng)都含有一個相同的因式m,m叫做各項(xiàng)的_________。如果把這個_________提到括號外面,這樣
ma+mb+mc就分解成兩個因式的積m(a+b+c),即ma+mb+mc=m(a+b+c)。這種________的方法叫做________。
2、練一練。P73練習(xí)第1題。
三、合作探究
1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一種變形,左邊是幾個整式乘積形式,右邊是一個多項(xiàng)式。、
2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一種變形,左邊是_____________,右邊是_____________。
3、下列是由左到右的變形,哪些屬于整式乘法,哪些屬于因式分解?
(1)(a+b)(a-b)=a-b(2)a+2ab+b=(a+b)
(3)-6x3+18x2-12x=-16(x2-3x+2)(4)(x-1)(x+1)=x2-1
4、準(zhǔn)確地確定公因式時提公因式法分解因式的關(guān)鍵,確定公因式可分兩步進(jìn)行:
(1)確定公因式的數(shù)字因數(shù),當(dāng)各項(xiàng)系數(shù)都是整數(shù)時,他們的最大公約數(shù)就是公因式的數(shù)字因數(shù)。
例如:8a2b-72abc公因式的數(shù)字因數(shù)為8。
(2)確定公因式的字母及其指數(shù),公因式的'字母應(yīng)是多項(xiàng)式各項(xiàng)都含有的字母,其指數(shù)取最低的。故8a2b-72abc的公因式是8ab
四、展示提升
1、填空(1)a2b-ab2=ab(________)
(2)-4a2b+8ab-4b分解因式為__________________
(3)分解因式4x2+12x3+4x=__________________
(4)__________________=-2a(a-2b+3c)
2、P73練習(xí)第2題和第3題
五、達(dá)標(biāo)測試。
1、下列各式從左到右的變形中,哪些是整式乘法?哪些是因式分解?哪些兩者都不是?
(1)ax+bx+cx+m=x(a+b+c)+m(2)mx-2m=m(x-2)
(3)2a(b+c)=2ab+2ac(4)(x-3)(x+3)=(x+3)(x-3)
(5)x2-y2-1=(x+y)(x-y)-1(6)(x-2)(x+2)=x2-4
2.課本P77習(xí)題8.5第1題
學(xué)習(xí)反思
一、知識點(diǎn)
二、易錯題
三、你的困惑
因式分解教案 篇5
學(xué)習(xí)目標(biāo)
1、學(xué)會用平方差公式進(jìn)行因式法分解
2、學(xué)會因式分解的而基本步驟.
學(xué)習(xí)重難點(diǎn)重點(diǎn):
用平方差公式進(jìn)行因式法分解.
難點(diǎn):
因式分解化簡的過程
自學(xué)過程設(shè)計(jì)教學(xué)過程設(shè)計(jì)
看一看
平方差公式:
平方差公式的逆運(yùn)用:
做一做:
1.填空題.
(1)25a2-_______=(5a+2b)(5a-2b);(2)x2-=(x-)(________).
(3)-a2+b2=(b+a)(________);(4)36x2-81y2=9(_______)(_______).
2.把下列各式分解因式結(jié)果為-(x-2y)(x+2y)的多項(xiàng)式是()
A.x2-4yB.x2+4y2C.-x2+4y2D.-x2-4y2
3.多項(xiàng)式-1+0.04a2分解因式的`結(jié)果是()
A.(-1+0.2a)2B.(1+0.2a)(1-0.2a)
C.(0.2a+1)(0.2a-1)D.(0.04a+1)(0.04a-1)
4.把下列各式分解因式:
(1)4x2-25y2;(2)0.81m2-n2;
(3)a3-9a;(4)8x3y3-2xy.
5.把下列各式分解因式:
(1)(3a+2b)2-(a-b)2;(2)4(x+2y)2-25(x-y)2.
6.用簡便方法計(jì)算:3492-2512.
想一想
你還有哪些地方不是很懂?請寫出來。
____________________________________________________________________________________
Xkb1.com預(yù)習(xí)展示一:
1、下列多項(xiàng)式能否用平方差公式分解因式?
說說你的理由。
4x2+y2
4x2-(-y)2
-4x2-y2-4x2+y2
a2-4a2+3
2.把下列各式分解因式:
(1)16-a2
(2)0.01s2-t2
(4)-1+9x2
(5)(a-b)2-(c-b)2
(6)-(x+y)2+(x-2y)2
應(yīng)用探究:
1、分解因式
4x3y-9xy3
變式:把下列各式分解因式
、賦4-81y4
、2a-8a
2、從前有一位張老漢向地主租了一塊“十字型”土地(尺寸如圖)。為便于種植,他想換一塊相同面積的長方形土地。同學(xué)們,你能幫助張老漢算出這塊長方形土地的長和寬嗎?w
3、在日常生活中如上網(wǎng)等都需要密碼.有一種因式分解法產(chǎn)生的密碼方便記憶又不易破譯.
例如用多項(xiàng)式x4-y4因式分解的結(jié)果來設(shè)置密碼,當(dāng)取x=9,y=9時,可得一個六位數(shù)的密碼“018162”.你想知道這是怎么來的嗎?
小明選用多項(xiàng)式4x3-xy2,取x=10,y=10時。用上述方法產(chǎn)生的密碼是什么?(寫出一個即可)
拓展提高:
若n為整數(shù),則(2n+1)2-(2n-1)2能被8整除嗎?請說明理由.
教后反思考察利用公式法因式分解的題目不會很難,但是需要學(xué)生記住公式的形式,之后利用公式把式子進(jìn)行變形,從而達(dá)到進(jìn)行因式分解的目的。
因式分解教案 篇6
教學(xué)目標(biāo):
1.知識與技能:掌握運(yùn)用提公因式法、公式法分解因式,培養(yǎng)學(xué)生應(yīng)用因式分解解決問題的能力.
2.過程與方法:經(jīng)歷探索因式分解方法的過程,培養(yǎng)學(xué)生研討問題的方法,通過猜測、推理、驗(yàn)證、歸納等步驟,得出因式分解的方法.
3.情感態(tài)度與價值觀:通過因式分解的學(xué)習(xí),使學(xué)生體會數(shù)學(xué)美,體會成功的自信和團(tuán)結(jié)合作精神,并體會整體數(shù)學(xué)思想和轉(zhuǎn)化的數(shù)學(xué)思想.
教學(xué)重、難點(diǎn):用提公因式法和公式法分解因式.
教具準(zhǔn)備:多媒體課件(小黑板)
教學(xué)方法:活動探究法
教學(xué)過程:
引入:在整式的變形中,有時需要將一個多項(xiàng)式寫成幾個整式的乘積的形式,這種變形就是因式分解.什么叫因式分解?
知識詳解
知識點(diǎn)1 因式分解的定義
把一個多項(xiàng)式化成幾個整式的積的形式,這種變形叫做把這個多項(xiàng)式因式分解,也叫做把這個多項(xiàng)式分解因式.
【說明】 (1)因式分解與整式乘法是相反方向的變形.
例如:
(2)因式分解是恒等變形,因此可以用整式乘法來檢驗(yàn).
怎樣把一個多項(xiàng)式分解因式?
知識點(diǎn)2 提公因式法
多項(xiàng)式ma+mb+mc中的各項(xiàng)都有一個公共的因式m,我們把因式m叫做這個多項(xiàng)式的公因式.ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成兩個因式乘積的形式,其中一個因式是各項(xiàng)的公因式m,另一個因式(a+b+c)是ma+mb+mc除以m所得的商,像這種分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1).
探究交流
下列變形是否是因式分解?為什么?
(1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;
(3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn.
典例剖析 師生互動
例1 用提公因式法將下列各式因式分解.
(1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);
分析:(1)題直接提取公因式分解即可,(2)題首先要適當(dāng)?shù)淖冃? 再把b-a化成-(a-b),然后再提取公因式.
小結(jié) 運(yùn)用提公因式法分解因式時,要注意下列問題:
(1)因式分解的結(jié)果每個括號內(nèi)如有同類項(xiàng)要合并,而且每個括號內(nèi)不能再分解.
(2)如果出現(xiàn)像(2)小題需統(tǒng)一時,首先統(tǒng)一,盡可能使統(tǒng)一的個數(shù)少。這時注意到(a-b)n=(b-a)n(n為偶數(shù)).
(3)因式分解最后如果有同底數(shù)冪,要寫成冪的.形式.
學(xué)生做一做 把下列各式分解因式.
(1) (2a+b)(2a-3b)+(2a+5b)(2a+b) ;(2) 4p(1-q)3+2(q-1)2
知識點(diǎn)3 公式法
(1)平方差公式:a2-b2=(a+b)(a-b).即兩個數(shù)的平方差,等于這兩個數(shù)的和與這個數(shù)的差的積.例如:4x2-9=(2x)2-32=(2x+3)(2x-3).
(2)完全平方公式:a2±2ab+b2=(a±b)2.其中,a2±2ab+b2叫做完全平方式.即兩個數(shù)的平方和加上(或減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或差)的平方.例如:4x2-12xy+9y2=(2x)2-2·2x·3y+(3y)2=(2x-3y)2.
探究交流
下列變形是否正確?為什么?
(1)x2-3y2=(x+3y)(x-3y);(2)4x2-6xy+9y2=(2x-3y)2;(3)x2-2x-1=(x-1)2.
例2 把下列各式分解因式.
(1) (a+b)2-4a2;(2)1-10x+25x2;(3)(m+n)2-6(m+n)+9.
分析:本題旨在考查用完全平方公式分解因式.
學(xué)生做一做 把下列各式分解因式.
(1)(x2+4)2-2(x2+4)+1; (2)(x+y)2-4(x+y-1).
綜合運(yùn)用
例3 分解因式.
(1)x3-2x2+x; (2) x2(x-y)+y2(y-x);
分析:本題旨在考查綜合運(yùn)用提公因式法和公式法分解因式.
小結(jié) 解因式分解題時,首先考慮是否有公因式,如果有,先提公因式;如果沒有公因式是兩項(xiàng),則考慮能否用平方差公式分解因式. 是三項(xiàng)式考慮用完全平方式,最后,直到每一個因式都不能再分解為止.
探索與創(chuàng)新題
例4 若9x2+kxy+36y2是完全平方式,則k= .
分析:完全平方式是形如:a2±2ab+b2即兩數(shù)的平方和與這兩個數(shù)乘積的2倍的和(或差).
學(xué)生做一做 若x2+(k+3)x+9是完全平方式,則k= .
課堂小結(jié)
用提公因式法和公式法分解因式,會運(yùn)用因式分解解決計(jì)算問題.
各項(xiàng)有"公"先提"公",首項(xiàng)有負(fù)常提負(fù),某項(xiàng)提出莫漏"1",括號里面分到"底"。
自我評價 知識鞏固
1.若x2+2(m-3)x+16是完全平方式,則m的值等于( )
A.3 B.-5 C.7. D.7或-1
2.若(2x)n-81=(4x2+9)(2x+3)(2x-3),則n的值是( )
A.2 B.4 C.6 D.8
3.分解因式:4x2-9y2= .
4.已知x-y=1,xy=2,求x3y-2x2y2+xy3的值.
5.把多項(xiàng)式1-x2+2xy-y2分解因式
思考題 分解因式(x4+x2-4)(x4+x2+3)+10.
因式分解教案 篇7
課型 復(fù)習(xí)課 教法 講練結(jié)合
教學(xué)目標(biāo)(知識、能力、教育)
1.了解分解因式的意義,會用提公因式法、 平方差公式和完全平方公式(直接用公式不超過兩次)分解因式(指數(shù)是正整數(shù)).
2.通過乘法公式 , 的逆向變形,進(jìn)一步發(fā)展學(xué)生觀察、歸納、類比、概括等能力,發(fā)展有條理的思考及語言表達(dá)能力
教學(xué)重點(diǎn) 掌握用提取公因式法、公式法分解因式
教學(xué)難點(diǎn) 根據(jù)題目的形式和特征 恰當(dāng)選擇方法進(jìn)行分解,以提高綜合解題能力。
教學(xué)媒體 學(xué)案
教學(xué)過程
一:【 課前預(yù)習(xí)】
(一):【知識梳理】
1.分解因式:把一個多項(xiàng)式化成 的形式,這種變形叫做把這個多項(xiàng)式分解因式.
2.分解困式的方法:
、盘峁珗F(tuán)式法:如果一個多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個公因式提出來,從而將多項(xiàng)式化成兩個因式乘積的形式,這種分解因式的方法叫做提公因式法.
、七\(yùn)用公式法:平方差公式: ;
完全平方公式: ;
3.分解因式的步驟:
(1)分解 因式時,首先考慮是否有公因式,如果有公因式,一定先提取公團(tuán)式,然后再考慮是否能用公式法 分解.
(2)在用公式時,若是兩項(xiàng),可考慮用平方差公式;若是三項(xiàng),可考慮用完全平方公式;若是三項(xiàng)以上,可先進(jìn)行適當(dāng)?shù)姆纸M,然后分解因式。
4.分解因式時常見的思維誤區(qū):
提公因式時,其公因式應(yīng)找字母指數(shù)最低的,而不是以首項(xiàng)為準(zhǔn).若有一項(xiàng)被全部提出,括號內(nèi)的項(xiàng) 1易漏掉.分解不徹底,如保留中括號形式,還能繼續(xù)分解等
(二):【課前練習(xí)】
1.下列各組多項(xiàng)式中沒有公因式的是( )
A.3x-2與 6x2-4x B.3(a-b)2與11(b-a)3
C.mxmy與 nynx D.aba c與 abbc
2. 下列各題中,分解因式錯誤的是( )
3. 列多項(xiàng)式能用平方差公式分解因式的是()
4. 分解因式:x2+2xy+y2-4 =_____
5. 分解因式:(1) ;
(2) ;(3) ;
(4) ;(5)以上三題用了 公式
二:【經(jīng)典考題剖析】
1. 分解因式:
(1) ;(2) ;(3) ;(4)
分析:①因式分解時,無論有幾項(xiàng),首先考慮提取公因式。提公因式時,不僅注意數(shù),也要 注意字母,字母可能是單項(xiàng)式也可能是多項(xiàng)式,一次提盡。
②當(dāng)某項(xiàng)完全提出后,該項(xiàng)應(yīng)為1
③注意 ,
、芊纸饨Y(jié)果(1)不帶中括號;(2)數(shù)字因數(shù)在前,字母因數(shù)在后;單項(xiàng)式在前,多項(xiàng)式在后;(3)相同因式寫成冪的形式;(4 )分解結(jié)果應(yīng)在指定范圍內(nèi)不能再分解為止;若無指定范圍,一般在有理數(shù)范圍內(nèi)分解。
2. 分解因式:(1) ;(2) ;(3)
分析:對于二次三項(xiàng)齊次式,將其中一個字母看作末知數(shù),另一個字母視為常數(shù)。首先考慮提公因式后,由余下因式的項(xiàng)數(shù)為3項(xiàng),可考慮完全平方式或十字相乘法繼續(xù)分解;如果項(xiàng)數(shù)為2,可考慮平方差、立方差、立方和公式。(3)題無公因式,項(xiàng)數(shù)為2項(xiàng),可考慮平方差公式先分解開,再由項(xiàng)數(shù)考慮選擇方法繼續(xù)分解。
3. 計(jì)算:(1)
(2)
分析:(1)此題先分解因式后約分,則余下首尾兩數(shù)。
(2)分解后,便有規(guī)可循,再求1到20xx的和。
4. 分解因式:(1) ;(2)
分析:對于四項(xiàng)或四項(xiàng)以上的多項(xiàng)式的因式分解,一般采用分組分解法,
5. (1)在實(shí)數(shù)范圍內(nèi)分解因式: ;
(2)已知 、 、 是△ABC的三邊,且滿足 ,
求證:△ABC為等邊三角形。
分析:此題給出的.是三邊之間的關(guān)系,而要證等邊三角形,則須考慮證 ,
從已知給出的等式結(jié)構(gòu)看出,應(yīng)構(gòu)造出三個完全平方式 ,
即可得證,將原式兩邊同乘以2即可。略證:
即△ABC為等邊三角形。
三:【課后訓(xùn)練】
1. 若 是一個完全平方式,那么 的值是( )
A.24 B.12 C.12 D.24
2. 把多項(xiàng)式 因式分解的結(jié)果是( )
A. B. C. D.
3. 如果二次三項(xiàng)式 可分解為 ,則 的 值為( )
A .-1 B.1 C. -2 D.2
4. 已知 可以被在60~70之間的兩個整數(shù)整除,則這兩個數(shù)是( )
A.61、63 B.61、65 C.61、67 D.63、65
5. 計(jì)算:19982002= , = 。
6. 若 ,那么 = 。
7. 、 滿足 ,分解因式 = 。
8. 因式分解:
(1) ;(2)
(3) ;(4)
9. 觀察下列等式:
想一想,等式左邊各項(xiàng)冪的底數(shù)與右邊冪的底數(shù)有何關(guān) 系?猜一猜可引出什么規(guī)律?用等式將其規(guī)律表示出來: 。
10. 已知 是△ABC的三邊,且滿足 ,試判斷△ABC的形狀。閱讀下面解題過程:
解:由 得:
①
、
即 ③
△ABC為Rt△。 ④
試問:以上解題過程是否正確: ;若不正確,請指出錯在哪一步?(填代號) ;錯誤原因是 ;本題結(jié)論應(yīng)為 。
四:【課后小結(jié)】
布置作業(yè) 地綱
因式分解教案 篇8
第6.4因式分解的簡單應(yīng)用
背景材料:
因式分解是初中數(shù)學(xué)中的一個重點(diǎn)內(nèi)容,也是一項(xiàng)重要的基本技能和基礎(chǔ)知識,更是一種數(shù)學(xué)的變形方法,在今后的學(xué)習(xí)中有著重要的作用。因此,除了單純的因式分解問題外,因式分解在解某些數(shù)學(xué)問題中有著廣泛的作用,因式分解在三角形中的應(yīng)用,因式分解可以用來證明代數(shù)問題,用于代數(shù)式的求值,用于求不定方程,用于解應(yīng)用題解決有關(guān)復(fù)雜數(shù)值的計(jì)算,本節(jié)課的例題因式分解在數(shù)學(xué)題中的簡單應(yīng)用。
教材分析:
本節(jié)課是本章的最后一節(jié),是學(xué)生學(xué)習(xí)因式分解初步應(yīng)用,首先要使學(xué)生體會到因式分解在數(shù)學(xué)中應(yīng)用,其次給學(xué)生提供更多機(jī)會體驗(yàn)主動學(xué)習(xí)和探索的“過程”與“經(jīng)歷”,使多數(shù)學(xué)里擁有一定問題解決的經(jīng)驗(yàn)。
教學(xué)目標(biāo):
1、在整除的情況下,會應(yīng)用因式分解,進(jìn)行多項(xiàng)式相除。
2、會應(yīng)用因式分解解簡單的一元二次方程。
3、體驗(yàn)數(shù)學(xué)問題中的矛盾轉(zhuǎn)化思想。
4、培養(yǎng)觀察和動手能力,自主探索與合作交流能力。
教學(xué)重點(diǎn):
學(xué)會應(yīng)用因式分解進(jìn)行多項(xiàng)式除法和解簡單一元二次方程。
教學(xué)難點(diǎn):
應(yīng)用因式分解解簡單的一元二次方程。
設(shè)計(jì)理念:
根據(jù)本節(jié)課的內(nèi)容特點(diǎn),主要采用師生合作控討式課堂教學(xué)方法,以教師為主導(dǎo),學(xué)生為主體,動手實(shí)踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標(biāo),引導(dǎo)學(xué)生自主探索,動手實(shí)踐,合作交流。注重使學(xué)生經(jīng)辦觀察、操作、推理等探索過程。這種教學(xué)理念,反映了時代精神,有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),能有效地激發(fā)學(xué)生的.思維積極性,學(xué)生在學(xué)習(xí)過程中調(diào)動各種感官,進(jìn)行觀察與抽象、操作與思考、自主與交流等,進(jìn)而改進(jìn)學(xué)生的學(xué)習(xí)方法。
教學(xué)過程:
一、創(chuàng)設(shè)情境,復(fù)習(xí)提問
1、將正式各式因式分解
。1)(a+b)2-10(a+b)+25 (2)-xy+2x2y+x3y
。3)2 a2b-8a2b (4)4x2-9
[四位同學(xué)到黑板上演板,本課時用復(fù)習(xí)“練習(xí)引入”也不失為一種好方法,既先復(fù)習(xí)因式分解的提取分因式和公式法,又為下面解決多項(xiàng)式除法運(yùn)算作鋪墊]
教師訂正
提出問題:怎樣計(jì)算(2 a2b-8a2b)÷(4a-b)
二、導(dǎo)入新課,探索新知
(先讓學(xué)生思考上面所提出的問題,教師從旁啟發(fā))
師:如果出現(xiàn)豎式計(jì)算,教師可以給予肯定;可能出現(xiàn)(2 a2b-8a2b)÷(4a-b)= ab-8a2追問學(xué)生怎么得來的,運(yùn)算的依據(jù)是什么?這樣暴露學(xué)生的思維,讓學(xué)生自己發(fā)現(xiàn)錯誤之處;觀察2 a2b-8a2b=2 ab(b-4a),其中一個因式正好是除式4a-b的相反數(shù),如果用“換元”思想,我們就可以把問題轉(zhuǎn)化為單項(xiàng)式除以單項(xiàng)式。
。2 a2b-8a2b)÷(4a-b)
=-2ab(4a-b)÷(4a-b)
=-2ab
。ㄗ寣W(xué)生自己比較哪種方法好)
利用上面的數(shù)學(xué)解題思路,同學(xué)們嘗試計(jì)算
。4x2-9)÷(3-2x)
學(xué)生總結(jié)解題步驟:1、因式分解;2、約去公因式)
。ㄈw學(xué)生動手動腦,然后叫學(xué)生回答,及時表揚(yáng),講練結(jié)合, [運(yùn)用多項(xiàng)式的因式分解和換元的思想,可以把兩個多項(xiàng)式相除,轉(zhuǎn)化為單項(xiàng)式的除法]
練習(xí)計(jì)算
(1)(a2-4)÷(a+2)
。2)(x2+2xy+y2)÷(x+y)
。3)[(a-b)2+2(b-a)] ÷(a-b)
三、合作學(xué)習(xí)
1、以四人為一組討論下列問題
若A?B=0,下面兩個結(jié)論對嗎?
。1)A和B同時都為零,即A=0且B=0
。2)A和B至少有一個為零即A=0或B=0
[合作學(xué)習(xí),四個小組討論,教師逐步引導(dǎo),讓學(xué)生講自己的想法,及解題步驟,培養(yǎng)語言表達(dá)能力,體會運(yùn)用因式分解的實(shí)際運(yùn)用作用,增加學(xué)習(xí)興趣]
2、你能用上面的結(jié)論解方程
(1)(2x+3)(2x-3)=0 (2)2x2+x=0
解:
∵(2x+3)(2x-3)=0
∴2x+3=0或2x-3=0
∴方程的解為x=-3/2或x=3/2
解:x(2x+1)=0
則x=0或2x+1=0
∴原方程的解是x1=0,x2=-1/2
[讓學(xué)生先獨(dú)立完成,再組織交流,最后教師針對性地講解,讓學(xué)生總結(jié)步驟:1、移項(xiàng),使方程一邊變形為零;2、等式左邊因式分解;3、轉(zhuǎn)化為解一元一次方程]
3、練習(xí),解下列方程
(1)x2-2x=0 4x2=(x-1)2
四、小結(jié)
。1)應(yīng)用因式分解和換元思想可以把某些多項(xiàng)式除法轉(zhuǎn)化為單項(xiàng)式除法。
。2)如果方程的等號一邊是零,另一邊含有未知數(shù)x的多項(xiàng)式可以分解成若干個x的一次式的積,那么就可以應(yīng)用因式分解把原方程轉(zhuǎn)化成幾個一元一次方程來解。
設(shè)計(jì)理念:
根據(jù)本節(jié)課的內(nèi)容特點(diǎn),主要采用師生合作討論式課堂教學(xué)方法,以教師為主導(dǎo),學(xué)生為主體,動手實(shí)踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標(biāo),引導(dǎo)學(xué)生自主探索,動手實(shí)踐,合作交流。注重使學(xué)生經(jīng)辦觀察、操作、推理等探索過程。這種教學(xué)理念,反映了時代精神,有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),能有效地激發(fā)學(xué)生的思維積極性,學(xué)生在學(xué)習(xí)過程中調(diào)動各種感官,進(jìn)行觀察與抽象、操作與思考、自主與交流等,進(jìn)而改進(jìn)學(xué)生的學(xué)習(xí)方法。
因式分解教案 篇9
知識點(diǎn):
因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項(xiàng)式的因式(十字相乘法、求根)、因式分解一般步驟。
教學(xué)目標(biāo):
理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項(xiàng)式的方法,能把簡單多項(xiàng)式分解因式。
考查重難點(diǎn)與常見題型:
考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點(diǎn)考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運(yùn)用。習(xí)題類型以填空題為多,也有選擇題和解答題。
教學(xué)過程:
因式分解知識點(diǎn)
多項(xiàng)式的因式分解,就是把一個多項(xiàng)式化為幾個整式的積。分解因式要進(jìn)行到每一個因式都不能再分解為止。分解因式的`常用方法有:
。1)提公因式法
如多項(xiàng)式
其中m叫做這個多項(xiàng)式各項(xiàng)的公因式, m既可以是一個單項(xiàng)式,也可以是一個多項(xiàng)式。
。2)運(yùn)用公式法,即用
寫出結(jié)果。
。3)十字相乘法
對于二次項(xiàng)系數(shù)為l的二次三項(xiàng)式 尋找滿足ab=q,a+b=p的a,b,如有,則對于一般的二次三項(xiàng)式尋找滿足
a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則
。4)分組分解法:把各項(xiàng)適當(dāng)分組,先使分解因式能分組進(jìn)行,再使分解因式在各組之間進(jìn)行。
分組時要用到添括號:括號前面是“+”號,括到括號里的各項(xiàng)都不變符號;括號前面是“-”號,括到括號里的各項(xiàng)都改變符號。
。5)求根公式法:如果有兩個根X1,X2,那么
2、教學(xué)實(shí)例:學(xué)案示例
3、課堂練習(xí):學(xué)案作業(yè)
4、課堂:
5、板書:
6、課堂作業(yè):學(xué)案作業(yè)
7、教學(xué)反思:
因式分解教案 篇10
教學(xué)目標(biāo):
1、進(jìn)一步鞏固因式分解的概念; 2、鞏固因式分解常用的三種方法
3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解 4、應(yīng)用因式分解來解決一些實(shí)際問題
5、體驗(yàn)應(yīng)用知識解決問題的樂趣
教學(xué)重點(diǎn):靈活運(yùn)用因式分解解決問題
教學(xué)難點(diǎn):靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒ǎ卣咕毩?xí)2、3
教學(xué)過程:
一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值
利用因式分解往往能將一些復(fù)雜的運(yùn)算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。
二、知識回顧
1、因式分解定義:把一個多項(xiàng)式化成幾個整式積的形式,這種變形叫做把這個多項(xiàng)式分解因式.
判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)
(1).x2-4y2=(x+2y)(x-2y) 因式分解 (2).2x(x-3y)=2x2-6xy 整式乘法
(3).(5a-1)2=25a2-10a+1 整式乘法 (4).x2+4x+4=(x+2)2 因式分解
(5).(a-3)(a+3)=a2-9 整式乘法 (6).m2-4=(m+4)(m-4) 因式分解
(7).2πR+2πr=2π(R+r) 因式分解
2、.規(guī)律總結(jié)(教師講解): 分解因式與整式乘法是互逆過程.
分解因式要注意以下幾點(diǎn): (1).分解的對象必須是多項(xiàng)式.
(2).分解的結(jié)果一定是幾個整式的乘積的形式. (3).要分解到不能分解為止.
3、因式分解的`方法
提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1) 公因式的概念;公因式的求法
公式法: 平方差公式:a2-b2=(a+b)(a-b) 完全平方公式:a2+2ab+b2=(a+b)2
4、強(qiáng)化訓(xùn)練
試一試把下列各式因式分解:
(1).1-x2=(1+x)(1-x) (2).4a2+4a+1=(2a+1)2
(3).4x2-8x=4x(x-2) (4).2x2y-6xy2 =2xy(x-3y)
三、例題講解
例1、分解因式
(1)-x3y3+x2y+xy (2)6(x-2)+2x(2-x)
(3) (4)y2+y+例2、分解因式
1、a3-ab2= 2、(a-b)(x-y)-(b-a)(x+y)= 3、(a+b) 2+2(a+b)-15=
4、-1-2a-a2= 5、x2-6x+9-y2 6、x2-4y2+x+2y=
例3、分解因式
1、72-2(13x-7) 2 2、8a2b2-2a4b-8b3
三、知識應(yīng)用
1、(4x2-9y2)÷(2x+3y) 2、(a2b-ab2)÷(b-a)
3、解方程:(1)x2=5x (2) (x-2)2=(2x+1)2
4、.若x=-3,求20x2-60x的值. 5、1993-199能被200整除嗎?還能被哪些整數(shù)整除?
四、拓展應(yīng)用
1.計(jì)算:7652×17-2352×17 解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)
2、20042+20xx被20xx整除嗎?
3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).
五、課堂小結(jié):今天你對因式分解又有哪些新的認(rèn)識?
【因式分解教案】相關(guān)文章:
因式分解復(fù)習(xí)教案教學(xué)設(shè)計(jì)參考03-08
關(guān)于因式分解教案合集九篇10-19
關(guān)于因式分解教案集錦九篇04-17
環(huán)保教案范文 小班教案環(huán)保教案03-25
實(shí)用的教案 完整的教案03-07
小班教案水果教案12-08
質(zhì)量教案示例教案02-25
中班教案在農(nóng)場里教案02-07
小班美術(shù)教案球教案02-06