2024初中數(shù)學(xué)教學(xué)教案(通用15篇)
作為一名無私奉獻的老師,通常會被要求編寫教案,教案是保證教學(xué)取得成功、提高教學(xué)質(zhì)量的基本條件。優(yōu)秀的教案都具備一些什么特點呢?以下是小編幫大家整理的2024初中數(shù)學(xué)教學(xué)教案,歡迎閱讀與收藏。
初中數(shù)學(xué)教學(xué)教案 1
知識技能
會通過“移項”變形求解“ax+b=cx+d”類型的一元一次方程。
數(shù)學(xué)思考
1.經(jīng)歷探索具體問題中的數(shù)量關(guān)系過程,體會一元一次方程是刻畫實際問題的有效數(shù)學(xué)模型。進一步發(fā)展符號意識。
2.通過一元一次方程的學(xué)習(xí),體會方程模型思想和化歸思想。
解決問題
能在具體情境中從數(shù)學(xué)角度和方法解決問題,發(fā)展應(yīng)用意識。
經(jīng)歷從不同角度尋求分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性。
情感態(tài)度
經(jīng)歷觀察、實驗計算、交流等活動,激發(fā)求知欲,體驗探究發(fā)現(xiàn)的快樂。
教學(xué)重點
建立方程解決實際問題,會通過移項解“ax+b=cx+d”類型的一元一次方程。
教學(xué)難點
分析實際問題中的相等關(guān)系,列出方程。
教學(xué)過程
活動一知識回顧
解下列方程:
1. 3x+1=4
2. x-2=3
3. 2x+0.5x=-10
4. 3x-7x=2
提問:解這些方程時,方程的解一般化成什么形式?這些題你采用了那些變形或運算?
教師:前面我們學(xué)習(xí)了簡單的一元一次方程的解法,下面請大家解下列方程。
出示問題(幻燈片)。
學(xué)生:獨立完成,板演2、4題,板演同學(xué)講解所用到的變形或運算,共同講評。
教師提問:(略)
教師追問:變形的依據(jù)是什么?
學(xué)生獨立思考、回答交流。
本次活動中教師關(guān)注:
(1)學(xué)生能否準(zhǔn)確理解運用等式性質(zhì)和合并同列項求解方程。
(2)學(xué)生對解一元一次方程的變形方向(化成x=a的形式)的.理解。
通過這個環(huán)節(jié),引導(dǎo)學(xué)生回顧利用等式性質(zhì)和合并同類項對方程進行變形,再現(xiàn)等式兩邊同時加上(或減去)同一個數(shù)、兩邊同時乘以(除以,不為0)同一個數(shù)、合并同類項等運算,為繼續(xù)學(xué)習(xí)做好鋪墊。
活動二問題探究
問題2:把一些圖書分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個班有多少學(xué)生?
教師:出示問題(投影片)
提問:在這個問題中,你知道了什么?根據(jù)現(xiàn)有經(jīng)驗?zāi)愦蛩阍趺醋觯?/p>
(學(xué)生嘗試提問)
學(xué)生:讀題,審題,獨立思考,討論交流。
1.找出問題中的已知數(shù)和已知條件。(獨立回答)
2.設(shè)未知數(shù):設(shè)這個班有x名學(xué)生。
3.列代數(shù)式:x參與運算,探索運算關(guān)系,表示相關(guān)量。(討論、回答、交流)
4.找相等關(guān)系:
這批書的總數(shù)是一個定值,表示它的兩個等式相等.(學(xué)生回答,教師追問)
總結(jié)提問:通過列方程解決實際問題分析時,要經(jīng)歷那些步驟?書寫時呢?
教師提問1:這個方程與我們前面解過的方程有什么不同?
學(xué)生討論后發(fā)現(xiàn):方程的兩邊都有含x的項(3x與4x)和不含字母的常數(shù)項(20與-25).
教師提問2:怎樣才能使它向x=a的形式轉(zhuǎn)化呢?
學(xué)生思考、探索:為使方程的右邊沒有含x的項,等號兩邊同減去4x,為使方程的左邊沒有常數(shù)項,等號兩邊同減去20。
教師提問3:以上變形依據(jù)是什么?
學(xué)生回答:等式的性質(zhì)1。
歸納:像上面那樣把等式一邊的某項變號后移到另一邊,叫做移項。
師生共同完成解答過程。
設(shè)問4:以上解方程中“移項”起了什么作用?
學(xué)生討論、回答,師生共同整理:
通過移項,含未知數(shù)的項與常數(shù)項分別位于方程左右兩邊,使方程更接近于x=a的形式。
教師提問5:解這個方程,我們經(jīng)歷了那些步驟?列方程時找了怎樣的相等關(guān)系?
學(xué)生思考回答。
教師關(guān)注:
(1)學(xué)生對列方程解決實際問題的一般步驟:設(shè)未知數(shù),列代數(shù)式,列方程,是否清楚?
在參與觀察、比較、嘗試、交流等數(shù)學(xué)活動中,體驗探究發(fā)現(xiàn)成功的快樂。
活動三解法運用
例2解方程
3x+7=32-2x
教師:出示問題
提問:解這個方程時,第一步我們先干什么?
學(xué)生講解,獨立完成,板演。
提問:“移項”是注意什么?
學(xué)生:變號。
教師關(guān)注:學(xué)生“移項”時是否能夠注意變號。
通過這個例題,掌握“ax+b=cx+d”類型的一元一次方程的解法。體驗“移項”這種變形在解方程中的作用,規(guī)范解題步驟。
初中數(shù)學(xué)教學(xué)教案 2
一、 教學(xué)目標(biāo)
1、 知識與技能目標(biāo)
掌握有理數(shù)乘法法則,能利用乘法法則正確進行有理數(shù)乘法運算。
2、 能力與過程目標(biāo)
經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學(xué)生觀察、歸納、猜測、驗證等能力。
3、 情感與態(tài)度目標(biāo)
通過學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。
二、 教學(xué)重點、難點
重點:運用有理數(shù)乘法法則正確進行計算。
難點:有理數(shù)乘法法則的'探索過程,符號法則及對法則的理解。
三、 教學(xué)過程
1、 創(chuàng)設(shè)問題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。
教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?
學(xué)生:26米。
教師:能寫出算式嗎?學(xué)生:……
教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的問題
2、 小組探索、歸納法則
。1)教師出示以下問題,學(xué)生以組為單位探索。
以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負(fù)方向。
① 2 ×3
2看作向東運動2米,×3看作向原方向運動3次。
結(jié)果:向 運動 米
2 ×3=
、 -2 ×3
-2看作向西運動2米,×3看作向原方向運動3次。
結(jié)果:向 運動 米
-2 ×3=
、 2 ×(-3)
2看作向東運動2米,×(-3)看作向反方向運動3次。
結(jié)果:向 運動 米
2 ×(-3)=
④ (-2) ×(-3)
-2看作向西運動2米,×(-3)看作向反方向運動3次。
結(jié)果:向 運動 米
。-2) ×(-3)=
。2)學(xué)生歸納法則
、俜枺涸谏鲜4個式子中,我們只看符號,有什么規(guī)律?
。+)×(+)=( ) 同號得
。-)×(+)=( ) 異號得
。+)×(-)=( ) 異號得
(-)×(-)=( ) 同號得
、诜e的絕對值等于 。
、廴魏螖(shù)與零相乘,積仍為 。
(3)師生共同用文字?jǐn)⑹鲇欣頂?shù)乘法法則。
3、 運用法則計算,鞏固法則。
。1)教師按課本P75 例1板書,要求學(xué)生述說每一步理由。
(2)引導(dǎo)學(xué)生觀察、分析例子中兩因數(shù)的關(guān)系,得出兩個有理數(shù)互為倒數(shù),它們的積為 。
(3)學(xué)生做練習(xí),教師評析。
(4)教師引導(dǎo)學(xué)生做例題,讓學(xué)生說出每步法則,使之進一步熟悉法則,同時讓學(xué)生總結(jié)出多因數(shù)相乘的符號法則。
初中數(shù)學(xué)教學(xué)教案 3
設(shè)計思想:
這堂課為章節(jié)復(fù)習(xí)課,教師可以先從總體知識結(jié)構(gòu)入手,引導(dǎo)學(xué)生逐步回顧所學(xué)的知識,要知道本章主要需要掌握的是如何利用二次函數(shù)及其表示方法、二次函數(shù)的圖像及性質(zhì)解決實際問題,即二次函數(shù)的應(yīng)用。
目標(biāo):
1.知識與技能
初步認(rèn)識二次函數(shù);
掌握二次函數(shù)的表達式,體會二次函數(shù)的意義;
會用數(shù)表、圖像和表達式三種表示方法來表示二次函數(shù),并會相互轉(zhuǎn)化;
會畫二次函數(shù),能利用二次函數(shù)求一元二次方程的近似解;
利用二次函數(shù)的圖像和性質(zhì)解決相關(guān)實際問題,靈活應(yīng)用二次函數(shù)。
2.過程與方法
通過利用二次函數(shù)的圖像解決問題,體會數(shù)形結(jié)合的數(shù)學(xué)方法;
在學(xué)習(xí)探索的過程中逐步體會和認(rèn)識二次函數(shù)。
3.情感、態(tài)度與價值觀
體會從特殊函數(shù)到一般函數(shù)的過渡,注意找函數(shù)之間的聯(lián)系和區(qū)別;
樹立主動參與積極探索嘗試、猜想和發(fā)現(xiàn)的精神;
注意運用數(shù)形結(jié)合的思想,改變過去只利用數(shù)式,而忽略圖形的思想。
教學(xué)重點:
二次函數(shù)的圖像和性質(zhì)。
教學(xué)難點:
二次函數(shù)y= 的圖像及性質(zhì);二次函數(shù)的應(yīng)用。
教學(xué)方法:
討論法、引導(dǎo)式。
教學(xué)媒體:
幻燈片。
教學(xué)過程:
、.知識復(fù)習(xí)
師:這堂課是這章的總結(jié)課,下面我們來看這章整體知識框架圖:(幻燈片)
觀看這章的知識整體框架,思考下面的問題:
1.你能用二次函數(shù)的知識解決哪些問題?
2.日常生活中,你在什么地方見到過二次函數(shù)的圖像拋物線的樣子?
3.你知道二次函數(shù)與一元二次方程的關(guān)系嗎?你能解決什么問題?
同學(xué)們,想想你們學(xué)習(xí)本章的收獲是__________。
同學(xué)們相互討論,然后師生互動共同探討上面的問題。
、.典型例題
例1:某農(nóng)場種植一種蔬菜,銷售員張平根據(jù)往年的銷售情況,對今年這種蔬菜的銷售價格進行了預(yù)測,預(yù)測情況如圖2-1,圖中的拋物線(部分)表示這種蔬菜銷售價與月份之間的關(guān)系,觀察圖象,你能得到關(guān)于這種蔬菜銷售情況的哪些信息?
要求:(1)請?zhí)峁┧臈l信息;(2)不必求函數(shù)的解析式。
解:(1)2月份每千克銷售價是3.5元;(2)2月份每千克銷售價是0.5元;(3)1月到7月的銷售價逐月下降;(4)7月到12月的銷售價逐月上升;(5)2月與7月的銷售差價是每千克3元;(6)7月份銷售價最低,1月份銷售價最高;(7)6月與8月、5月與9與、4月與10月、3月與11月,2月與12月的銷售價相同。
(注:此題答案不唯一,以上答案僅供參考,若有其他答案,只要是根據(jù)圖象得出的信息,并且敘述正確即可)
討論:
生:對于這類問題,我常感到無從下手。
師:要重點看一下橫軸與縱軸分別是哪一個變量,然后再看一下它的數(shù)據(jù)分別是多少。
例2:(北京石景山)已知:等邊 中, 是關(guān)于 的方程 的兩個實數(shù)根,若 分別是 上的點,且 ,設(shè) 求 關(guān)于 的函數(shù)關(guān)系式,并求出 的最小值。
解: 是等邊三角形, 。
不合題意,舍去, 即
又 ,
又 ∽
設(shè) 則
當(dāng) ,即 為 的重點時, 有最小值6。
討論:
生:這個題目包含的內(nèi)容較多,我感到難度很大。
師:本題涉及到等邊三角形的性質(zhì),解直角三角形。二次函數(shù)的有關(guān)內(nèi)容,是一道綜合性題目。
生:對于這樣的題目如何入手呢?
師:要認(rèn)真分析題目,明確每一條件的用處。
例3:某校初三年級的一場籃球比賽中,如圖2-2,隊員甲正在投籃,已知球出手時離地面高 ,與籃球中心的水平距離為7m,當(dāng)球出手后水平距離為4m時到達最大高度4m,設(shè)籃球運行的軌跡為拋物線,籃圈距地面3m。
(1)建立如圖2-3的平面直角坐標(biāo)系,問此球能否準(zhǔn)確投中?
。2)此時,若對方隊員乙在甲前面1m處跳起蓋帽攔截,已知乙的最大摸高為3.1m,那么他能否獲得成功?
解:(1)
根據(jù)題意:球出手點、最高點和藍圈的`坐標(biāo)分別為 。
設(shè)二次函數(shù)的解析式
代入 兩點坐標(biāo)為
將 點坐標(biāo)代入解析式;左=右;所以一定能投中。
。2)將 代入解析式: 蓋帽能獲得成功。
討論:
生:此球能否準(zhǔn)確投中,與二次函數(shù)的知識有何聯(lián)系,我不大清楚。
師:籃球運行的軌跡為拋物線,藍圈可以看成一個點,所以此球能否準(zhǔn)確投中的問題,實際上就是看一下該點在不在拋物線上即可。
例4:如圖2-4,一位籃球運動員跳起投籃,球沿拋物線 運行,然后準(zhǔn)確落入籃框內(nèi),已知籃框的中心離地面的距離為3.05米。
。1)球在空中運行的最大高度為多少米?
(2)如果該運動員跳投時,球出手離地面的高度為2.25米,請問他距離籃框中心的水平距離是多少?
解:(1) 拋物線 的頂點坐標(biāo)為(0,3.5)。
∴球在空中運行的最大高度為3.5米。
。2)在 中,當(dāng) 時,
又 。
當(dāng) 時, 又
故運動員距離籃框中心水平距離為 米。
討論:
生:我對運動員距離籃框中心水平距離有點迷惑。
師:運動員距離籃框中心水平距離,就是過藍框向地面做垂線,垂足與人的站立點的距離。
例5:已知拋物線 。
(1)證明拋物線頂點一定在直線 上。
。2)若拋物線與 軸交于 兩點,當(dāng) ,且 時,求拋物線的解析式。
。3)若(2)中所求拋物線頂點為 ,與 軸交點在原點上方,拋物線的對稱軸與 軸腳于點 ,直線 與 軸交于點 ,點 為拋物線對稱軸上一動點,過點 作 ⊥ ,垂足 在線段 上,試問:是否存在點 ,使 若存在,求出點 的坐標(biāo);若不存在,請說明理由。
解:(1) ,
∴頂點坐標(biāo)為( )∴頂點在直線 上
。2)∵拋物線與 軸交于 兩點,∴ 。
即 ,解得 。
∵ 或 當(dāng) 時, (與 矛盾,舍去), 。
當(dāng) 時, 或 。
。3)∵拋物線與 軸交點在原點的上方,∴
∵直線 與 軸交于點 ∴設(shè) ,則
解得 。
當(dāng) 時,
當(dāng) 時,
∴ 或
討論:
生:拋物線頂點在直線 上如何證明?
師:拋物線的頂點坐標(biāo)可以求出吧?
生:只要用公式即可。
師:將拋物線的頂點坐標(biāo)代入直線的解析式,如果適合直線的解析式,則點在直線 上;否則,點不在直線 上。
、.課堂小結(jié)
我們這堂課主要需要掌握的是如何利用二次函數(shù)及其表示方法、二次函數(shù)的圖像及性質(zhì)解決實際問題,即二次函數(shù)的應(yīng)用。
板書設(shè)計:
小結(jié)與復(fù)習(xí)
一、知識回顧 例2 例3
二、典型例題 例4 例5
初中數(shù)學(xué)教學(xué)教案 4
教學(xué)目標(biāo):
1、初步體會從不同方向觀察同一物體可能看到不同的圖形;
2、能識別簡單物體的三視圖,體會物體三視圖的合理性;
3、會畫立方體及其簡單組合的三視圖;
過程與方法
1、 在“觀察”的活動過程中,積累數(shù)學(xué)活動經(jīng)驗,發(fā)展空間觀念;
2、 能在與他人交流的過程中,合理清晰地表達自己的思維過程;
3、 滲透多側(cè)面觀察分析的思維方法;
情感與態(tài)度
通過系列學(xué)生感興趣的活動,形成學(xué)習(xí)數(shù)學(xué)的積極情感,激發(fā)對空間與圖形學(xué)習(xí)的好奇心,逐漸形成與他人合作交流的意識.
教學(xué)重、難點:
重點:體會從不同方向看同一物體可能看到不同的結(jié)果.
難點:能畫立方體及簡單組合的三視圖.
教法學(xué)法:
①發(fā)現(xiàn)式教學(xué)法
、趧邮謱嵺`與思考相結(jié)合法
教學(xué)過程設(shè)計:
一、創(chuàng)設(shè)情境,引入新課
1. 看錄像;
2. 從學(xué)生熟悉的古詩入手,觀察廬山;
3. 房屋的`房型圖
二、觀察體驗、探索結(jié)論
活動1:觀察一組圖片,找出結(jié)論.
活動2:觀察圖片,注意這些圖片的拍攝角度,你能挑出一組三視圖的圖片嗎?
活動3:猜猜看:通過從不同角度拍攝的圖片來猜測實物是什么?
活動4:觀察下圖
如果分別從正面、左面、上面看著三個幾何體,分別得到什么平面圖形?
三.學(xué)畫簡單幾何體的三視圖
給出由4個小正方體形成的組合圖形, 從正面、左面、上面觀察并畫出相應(yīng)的平面圖形.
如: 從上面看
從左面看
從正面看 從左面看 從上面看
從正面看
做一做:以小組為單位,用6個小立方體塊搭出不同的幾何體,然后根據(jù)搭建的幾何體畫出從正面、左面、上面觀察得到的平面圖形,并在小組內(nèi)交流驗證,看誰畫的圖最標(biāo)準(zhǔn).而后,全班同學(xué)根據(jù)某小組畫的三視圖來組合立體圖形.
四、小結(jié)與反思:
1.本節(jié)課研究的主要內(nèi)容是什么?
2.本節(jié)課數(shù)學(xué)知識對平時的學(xué)習(xí)生活有何作用?
五、練習(xí)與作業(yè):
能力作業(yè):畫出我校教學(xué)樓的三視圖(以面向南為“從正面看”),或者畫出你家的房屋(或設(shè)計)的平面圖.
初中數(shù)學(xué)教學(xué)教案 5
教材與學(xué)情:
解直角三角形的應(yīng)用是在學(xué)生熟練掌握了直角三角形的解法的基礎(chǔ)上進行教學(xué),它是把一些實際問題轉(zhuǎn)化為解直角三角形的數(shù)學(xué)問題,對分析問題能力要求較高,這會使學(xué)生學(xué)習(xí)感到困難,在教學(xué)中應(yīng)引起足夠的重視。
信息論原理:
將直角三角形中邊角關(guān)系作為已有信息,通過復(fù)習(xí)(輸入),使學(xué)生更牢固地掌握(貯存);再通過例題講解,達到信息處理;通過總結(jié)歸納,使信息優(yōu)化;通過變式練習(xí),使信息強化并能靈活運用;通過布置作業(yè),使信息得到反饋。
教學(xué)目標(biāo):
1、認(rèn)知目標(biāo):
、哦贸R娒~(如仰角、俯角)的意義
⑵能正確理解題意,將實際問題轉(zhuǎn)化為數(shù)學(xué)
、悄芾靡延兄R,通過直接解三角形或列方程的方法解決一些實際問題。
2、能力目標(biāo):培養(yǎng)學(xué)生分析問題和解決問題的能力,培養(yǎng)學(xué)生思維能力的靈活性。
3、情感目標(biāo):使學(xué)生能理論聯(lián)系實際,培養(yǎng)學(xué)生的對立統(tǒng)一的'觀點。
教學(xué)重點、難點:
重點:利用解直角三角形來解決一些實際問題
難點:正確理解題意,將實際問題轉(zhuǎn)化為數(shù)學(xué)問題。
信息優(yōu)化策略:
、旁趯W(xué)生對實際問題的探究中,神經(jīng)興奮,思維活動始終處于積極狀態(tài)
、圃跉w納、變換中激發(fā)學(xué)生思維的靈活性、敏捷性和創(chuàng)造性。
、侵匾晫W(xué)法指導(dǎo),以加速教學(xué)效績信息的順利體現(xiàn)。
教學(xué)媒體:
投影儀、教具(一個銳角三角形,可變換圖2-圖7)
高潮設(shè)計:
1、例1、例2圖形基本相同,但解法不同;這是為什么?學(xué)生的思維處于積極探求狀態(tài)中,從而激發(fā)學(xué)生學(xué)習(xí)的積極性和主動性
2、將一個銳角三角形紙片通過旋轉(zhuǎn)、翻折等變換,使學(xué)生對問題本質(zhì)有了更深的認(rèn)識
教學(xué)過程:
一、復(fù)習(xí)引入,輸入并貯存信息:
1.提問:如圖,在Rt△ABC中,∠C=90°。
⑴三邊a、b、c有什么關(guān)系?
、苾射J角∠A、∠B有怎樣的關(guān)系?
、沁吪c角之間有怎樣的關(guān)系?
2.提問:解直角三角形應(yīng)具備怎樣的條件:
注:直角三角形的邊角關(guān)系及解直角三角形的條件由投影給出,便于學(xué)生貯存信息
二、實例講解,處理信息:
例1.(投影)在水平線上一點C,測得同頂?shù)难鼋菫?0°,向山沿直線 前進20為到D處,再測山頂A的仰角為60°,求山高AB。
、乓龑(dǎo)學(xué)生將實際問題轉(zhuǎn)化為數(shù)學(xué)問題。
、品治觯呵驛B可以解Rt△ABD和
Rt△ABC,但兩三角形中都不具備直接條件,但由于∠ADB=2∠C,很容易發(fā)現(xiàn)AD=CD=20米,故可以解Rt△ABD,求得AB。
、墙忸}過程,學(xué)生練習(xí)。
、人伎迹杭偃纭螦DB=45°,能否直接來解一個三角形呢?請看例2。
例2.(投影)在水平線上一點C,測得山頂A的仰角為30°,向山沿直線前進20米到D處,再測山頂A的仰角為45°,求山高AB。
分析:
、旁赗t△ABC和Rt△ABD中,都沒有兩個已知元素,故不能直接解一個三角形來求出AB。
、瓶紤]到AB是兩直角三角形的直角邊,而CD是兩直角三角形的直角邊,而CD均不是兩個直角三角形的直角邊,但CD=BC=BD,啟以學(xué)生設(shè)AB=X,通過 列方程來解,然后板書解題過程。
解:設(shè)山高AB=x米
在Rt△ADB中,∠B=90°∠ADB=45°
∵BD=AB=x(米)
在Rt△ABC中,tgC=AB/BC
∴BC=AB/tgC=√3(米)
∵CD=BC-BD
∴√3x-x=20 解得 x=(10√3+10)米
答:山高AB是(10√3+10)米
三、歸納總結(jié),優(yōu)化信息
例2的圖開完全一樣,如圖,均已知∠1、∠2及CD,例1中 ∠2=2∠1 求AB,則需解Rt△ABD例2中∠2≠2∠1求AB,則利用CD=BC-BD,列方程來解。
四、變式訓(xùn)練,強化信息
(投影)練習(xí)1:如圖,山上有鐵塔CD為m米,從地上一點測得塔頂C的仰角為∝,塔底D的仰角為β,求山高BD。
練習(xí)2:如圖,海岸上有A、B兩點相距120米,由A、B兩點觀測海上一保輪船C,得∠CAB=60°∠CBA=75°,求輪船C到海岸AB的距離。
練習(xí)3:在塔PQ的正西方向A點測得頂端P的
仰角為30°,在塔的正南方向B點處,測得頂端P的仰角為45°且AB=60米,求塔高PQ。
教師待學(xué)生解題完畢后,進行講評,并利用教具揭示各題實質(zhì):
、艑⒒緢D形4旋轉(zhuǎn)90°,即得圖5;將基本圖形4中的Rt△ABD翻折180°,即可得圖6;將基本圖形4中Rt△ABD繞AB旋轉(zhuǎn)90°,即可得圖7的立體圖形。
、埔龑(dǎo)學(xué)生歸納三個練習(xí)題的等量關(guān)系:
練習(xí)1的等量關(guān)系是AB=AB;練習(xí)2的等量關(guān)系是AD+BD=AB;練習(xí)3的等量關(guān)系是AQ2+BQ2=AB2
五、作業(yè)布置,反饋信息
《幾何》第三冊P57第10題,P58第4題。
板書設(shè)計:
解直角三角形的應(yīng)用
例1已知:………例2已知:………小結(jié):………
求:………求:………
解:………解:………
練習(xí)1已知:………練習(xí)2已知:………練習(xí)3已知:………
求:………求:………求:………
解:………解:………解:………
初中數(shù)學(xué)教學(xué)教案 6
一、教學(xué)目的:
1、理解并掌握菱形的定義及兩個判定方法;會用這些判定方法進行有關(guān)的論證和計算;
2、在菱形的判定方法的探索與綜合應(yīng)用中,培養(yǎng)學(xué)生的觀察能力、動手能力及邏輯思維能力.
二、重點、難點
1、教學(xué)重點:菱形的兩個判定方法.
2、教學(xué)難點:判定方法的證明方法及運用.
三、例題的意圖分析
本節(jié)課安排了兩個例題,其中例1是教材P109的例3,例2是一道補充的題目,這兩個題目都是菱形判定方法的直接的運用,主要目的是能讓學(xué)生掌握菱形的判定方法,并會用這些判定方法進行有關(guān)的論證和計算.這些題目的推理都比較簡單,學(xué)生掌握起來不會有什么困難,可以讓學(xué)生自己去完成.程度好一些的班級,可以選講例3.
四、課堂引入
1、復(fù)習(xí)
(1)菱形的.定義:一組鄰邊相等的平行四邊形;
(2)菱形的性質(zhì)1:菱形的四條邊都相等;
性質(zhì)2:菱形的對角線互相平分,并且每條對角線平分一組對角;
(3)運用菱形的定義進行菱形的判定,應(yīng)具備幾個條件?(判定:2個條件)
2、【問題】要判定一個四邊形是菱形,除根據(jù)定義判定外,還有其它的判定方法嗎?
3、【探究】(教材P109的探究)用一長一短兩根木條,在它們的中點處固定一個小釘,做成一個可轉(zhuǎn)動的十字,四周圍上一根橡皮筋,做成一個四邊形.轉(zhuǎn)動木條,這個四邊形什么時候變成菱形?
通過演示,容易得到:
菱形判定方法1對角線互相垂直的平行四邊形是菱形。
注意此方法包括兩個條件:
(1)是一個平行四邊形;
(2)兩條對角線互相垂直.
通過教材P109下面菱形的作圖,可以得到從一般四邊形直接判定菱形的方法:
菱形判定方法2四邊都相等的四邊形是菱形。
五、例習(xí)題分析
例1(教材P109的例3)略
例2(補充)已知:如圖ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F.
求證:四邊形AFCE是菱形
證明:∵四邊形ABCD是平行四邊形
∴AE∥FC.
∴∠1=∠2.
又∠AOE=∠COF,AO=CO,
∴△AOE≌△COF.
∴EO=FO.
∴四邊形AFCE是平行四邊形.
又EF⊥AC,
∴AFCE是菱形(對角線互相垂直的平行四邊形是菱形)
※例3(選講)已知:如圖,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB與D,EH⊥AB于H,CD交BE于F.
求證:四邊形CEHF為菱形
略證:易證CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因為∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF
所以,CF=CE=EH,CF∥EH,所以四邊形CEHF為菱形
六、隨堂練習(xí)
1、填空:
(1)對角線互相平分的四邊形是;
(2)對角線互相垂直平分的四邊形是________;
(3)對角線相等且互相平分的四邊形是________;
(4)兩組對邊分別平行,且對角線的四邊形是菱形.
2、畫一個菱形,使它的兩條對角線長分別為6cm、8cm.
3、如圖,O是矩形ABCD的對角線的交點,DE∥AC,CE∥BD,DE和CE相交于E,求證:四邊形OCED是菱形。
七、課后練習(xí)
1、下列條件中,能判定四邊形是菱形的是
(A)兩條對角線相等(B)兩條對角線互相垂直
(C)兩條對角線相等且互相垂直(D)兩條對角線互相垂直平分
2、已知:如圖,M是等腰三角形ABC底邊BC上的中點,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求證:四邊形MEND是菱形。
3、做一做:
設(shè)計一個由菱形組成的花邊圖案,花邊的長為15cm,寬為4cm,由有一條對角線在同一條直線上的四個菱形組成,前一個菱形對角線的交點,是后一個菱形的一個頂點.畫出花邊圖形。
初中數(shù)學(xué)教學(xué)教案 7
目標(biāo)
1聯(lián)系生活中的具體事物,通過觀察和動手操作,初步體會生活中的對稱現(xiàn)象,認(rèn)識軸對稱圖形的基本特征,會識別并能做出一些簡單的`軸對稱圖形。
2.在認(rèn)識、制作和欣賞軸對稱圖形的過程中,感受到物體圖形的對稱美,激發(fā)學(xué)生對數(shù)學(xué)學(xué)習(xí)的積極情感。
重點難點
理解軸對稱圖形的基本特征
教具
準(zhǔn)備 剪刀、紙(含平行四邊形、字母N S)、教學(xué)掛圖、直尺
教學(xué)方法
手段 觀察、比較、討論、動手操作
教學(xué)過程
一、新課
1.教師取一個門框上固定門的鉸連讓學(xué)生觀察是不是左右對稱?
2.出示教學(xué)掛圖:天安門、飛機、獎杯的實物圖片
將實物圖片進一步抽象為平面圖形,對折以后問學(xué)生發(fā)現(xiàn)了什么?
生:對折后兩邊能完全重合。
師;對折后能完全重合的圖形就是軸對稱圖形。折痕所在的這條直線叫做對稱軸。
教師先示范,讓學(xué)生認(rèn)識天安門城樓圖的對稱軸,然后讓學(xué)生再找出飛機圖、獎杯圖的對稱軸各在哪里。
3.練習(xí)題:(出示小黑板)
(1)P57“試一試”
判斷哪幾個圖形是軸對稱圖形?試著畫出對稱軸。
估計學(xué)生會將平行四邊形看作是軸對稱圖形,可讓兩個學(xué)生到講臺前用平行四邊形紙對折一下,看對折以后兩部分是否完全重合。由此得出結(jié)論;平行四邊形不是軸對稱圖形。
(2)用剪刀和紙剪一個軸對稱圖形。
二、練習(xí)
1.出示掛圖:(p58“想想做做”第1題)
判斷哪些圖形是軸對稱圖形?
生:豎琴圖、轎車圖、五角星圖、鐵錨圖、科技標(biāo)志圖、中國農(nóng)業(yè)銀行標(biāo)志圖
師:鑰匙圖和紫荊花圖為什么不是?
生:因為對折以后兩部分沒有完全重合。
2.看書p58“想想做做”第2題
判斷哪些英文字母是軸對稱圖形?
生:A、C、T、M、X(有可能有的學(xué)生沒有選C,還有可能有的學(xué)生選N、S、Z)
師:沒有選C的同學(xué)除了豎著對折,看看橫著、斜著對折你有沒有去試一試?認(rèn)為N、S、Z是軸對稱圖形的我請兩個學(xué)生到講臺前用表示字母N、S的紙對折一下,看看對折以后兩部分有沒有完全重合?
學(xué)生試完以后會發(fā)現(xiàn)兩部分沒有完全重合。
教師再將字母N橫過來就變成了字母Z,同樣道理,兩部分也不會完全重合。
初中數(shù)學(xué)教學(xué)教案 8
教學(xué)目標(biāo)
知識技能
1.通過觀察實驗,使學(xué)生理解圓的對稱性。
2.掌握垂徑定理及其推論,理解其證明,并會用它解決有關(guān)的證明與計算問題。
過程方法
1.利用操作幾何的方法,理解圓是軸對稱圖形,過圓心的直線都是它的對稱軸。
2.經(jīng)歷探索垂徑定理及其推論的過程,進一步和理解研究幾何圖形的各種方法。
情感態(tài)度
激發(fā)學(xué)生觀察、探究、發(fā)現(xiàn)數(shù)學(xué)問題的興趣和欲望。
教學(xué)重點
垂徑定理及其運用
教學(xué)難點
發(fā)現(xiàn)并證明垂徑定理
教學(xué)過程設(shè)計
教學(xué)程序及教學(xué)內(nèi)容師生行為設(shè)計意圖
一、導(dǎo)語:直徑是圓中特殊的弦,研究直徑是研究圓的重要突破口,這節(jié)課我們就從對直徑的研究開始來研究圓的性質(zhì)。
二、探究新知
(一)圓的對稱性
沿著圓的任意一條直徑所在直線對折,重復(fù)做幾次,看看你能發(fā)現(xiàn)什么結(jié)論?
得到:把圓沿著它的任意一條直徑所在直線對折,直徑兩旁的兩個半圓就會重合在一起,因此,圓是軸對稱圖形,任何一條直徑所在的直線都是圓的對稱軸。
。ǘ、垂徑定理
完成課本思考
分析:
1.如何說明圖24.1-7是軸對稱圖形?
2.你能用不同方法說明圖中的線段相等,弧相等嗎?
垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對的兩條弧。
即:直徑CD垂直于弦AB則CD平分弦AB,并且平分弦AB所對的兩條弧。
推理驗證:可以連結(jié)OA、OB,證其與AE、BE構(gòu)成的兩個全等三角形,進一步得到不同的等量關(guān)系。
分析:垂徑定理是由哪幾個已知條件得到哪幾條結(jié)論?
即一條直線若滿足過圓心、垂直于弦、則可以推出平分弦、平分弦所對的優(yōu)弧,平分弦所對的劣弧。
垂徑定理推論
平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。
思考:
1.這條推論是由哪幾個已知條件得到哪幾條結(jié)論?
2.為什么要求“弦不是直徑”?否則會出現(xiàn)什么情況?
垂徑定理的進一步推廣
思考:類似推論的結(jié)論還有嗎?若有,有幾個?分別用語言敘述出來。
歸納:只要已知一條直線滿足“垂直于弦、過圓心、平分弦、平分弦所對的優(yōu)弧,平分弦所對的劣弧.”中的兩個條件,就可以得到另外三個結(jié)論。
(三)、垂徑定理、推論的應(yīng)用
完成課本趙州橋問題
分析:1.根據(jù)橋的實物圖畫出的幾何圖形應(yīng)是怎樣的?
2.結(jié)合所畫圖形思考:圓的半徑r、弦心距d、弦長a,弓形高h(yuǎn)有怎樣的數(shù)量關(guān)系?
3.在圓中解決有關(guān)弦的問題時,常常需要作垂直于弦的直徑,作為輔助線,這樣就可以把垂徑定理和勾股定理結(jié)合起來,得到圓的半徑r、弦心距d、弦長a的.一半之間的關(guān)系式:
三、課堂訓(xùn)練
完成課本88頁練習(xí)
補充:
1.如圖,一條公路的轉(zhuǎn)彎處是一段圓弧,點O是圓心,其中CD=600m,E為圓O上一點,OE⊥CD,垂足為F,EF=90m,求這段彎路的半徑.
2.有一石拱橋的橋拱是圓弧形,如圖所示,正常水位下水面寬AB=60m,水面到拱頂距離CD=18m,當(dāng)洪水泛濫時,水面寬MN=32m時是否需要采取緊急措施?請說明理由.(當(dāng)水面距拱頂3米以內(nèi)時需要采取緊急措施)
四、小結(jié)歸納
1. 垂徑定理和推論及它們的應(yīng)用
2. 垂徑定理和勾股定理相結(jié)合,將圓的問題轉(zhuǎn)化為直角三角形問題.
3.圓中常作輔助線:半徑、過圓心的弦的垂線段
五、作業(yè)設(shè)計
作業(yè):課本94頁 1,95頁 9,12
補充:已知:在半徑為5?的⊙O中,兩條平行弦AB,CD分別長8?,6?
求兩條平行弦間的距離.教師從直徑引出課題,引起學(xué)生思考
學(xué)生用紙剪一個圓,按教師要求操作,觀察,思考,交流,嘗試發(fā)現(xiàn)結(jié)論
學(xué)生觀察圖形,結(jié)合圓的對稱性和相關(guān)知識進行思考,嘗試得出垂徑定理,并從不同角度加以解釋.再進行嚴(yán)格的幾何證明.
師生分析,進一步理解定理,析出定理的題設(shè)和結(jié)論.
教師引導(dǎo)學(xué)生類比定理獨立用類似的方法進行探究,得到推論
學(xué)生根據(jù)問題進行思考,更好的理解定理和推論,并弄明白它們的區(qū)別與聯(lián)系
學(xué)生審題,嘗試自己畫圖,理清題中的數(shù)量關(guān)系,并思考解決方法,由本節(jié)課知識想到作輔助線辦法,教師組織學(xué)生進行練習(xí),教師巡回檢查,集體交流評價,教師指導(dǎo)學(xué)生寫出解答過程,方法,規(guī)律
引導(dǎo)學(xué)生分析:要求當(dāng)洪水到來時,水面寬MN=32m是否需要采取緊急措施,只要求出DE的長,因此只要求半徑R,然后運用幾何代數(shù)解求R.
讓學(xué)生嘗試歸納,發(fā)言,體會,反思,教師點評匯總
通過學(xué)生親自動手操作發(fā)現(xiàn)圓的對稱性,為后續(xù)探究打下基礎(chǔ)
通過該問題引起學(xué)生思考,進行探究,發(fā)現(xiàn)垂徑定理,初步感知培養(yǎng)學(xué)生的分析能力,解題能力
為繼續(xù)探究其推論奠定基礎(chǔ)
培養(yǎng)學(xué)生解決問題的意識和能力
全面的理解和掌握垂徑定理和它的推論,并進行推廣,得到其他幾個定理,完整的把握所學(xué)知識
體會轉(zhuǎn)化思想,化未知為已知,從而解決本題,同時把握一類題型的解題方法,作輔助線方法
運用所學(xué)知識進行應(yīng)用,鞏固知識,形成做題技巧
讓學(xué)生通過練習(xí)進一步理解,培養(yǎng)學(xué)生的應(yīng)用意識和能力
歸納提升,加強學(xué)習(xí)反思,幫助學(xué)生養(yǎng)成系統(tǒng)整理知識的習(xí)慣
鞏固深化提高
板 書 設(shè) 計
課題
垂徑定理垂徑定理的進一步推廣
趙州橋問題歸納
初中數(shù)學(xué)教學(xué)教案 9
一、教學(xué)目標(biāo):
1、知識目標(biāo):
①能準(zhǔn)確理解絕對值的幾何意義和代數(shù)意義。
、谀軠(zhǔn)確熟練地求一個有理數(shù)的絕對值。
、凼箤W(xué)生知道絕對值是一個非負(fù)數(shù),能更深刻地理解相反數(shù)的概念。
2、能力目標(biāo):
①初步培養(yǎng)學(xué)生觀察、分析、歸納和概括的思維能力。
、诔醪脚囵B(yǎng)學(xué)生由抽象到具體再到抽象的思維能力。
3、情感目標(biāo):
、偻ㄟ^向?qū)W生滲透數(shù)形結(jié)合思想和分類討論的思想,讓學(xué)生領(lǐng)略到數(shù)學(xué)的奧妙,從而激起他們的好奇心和求知欲望。
、谕ㄟ^課堂上生動、活潑和愉快、輕松地學(xué)習(xí),使學(xué)生感受到學(xué)習(xí)數(shù)學(xué)的快樂,從而增強他們的自信心。
二、教學(xué)重點和難點
教學(xué)重點:絕對值的幾何意義和代數(shù)意義,以及求一個數(shù)的絕對值。
教學(xué)難點:絕對值定義的得出、意義的理解及求一個負(fù)數(shù)的絕對值。
三、教學(xué)方法
啟發(fā)引導(dǎo)式、討論式和談話法
四、教學(xué)過程
(一)復(fù)習(xí)提問
問題:相反數(shù)6與-6在數(shù)軸上與原點的距離各是多少?兩個相反數(shù)在數(shù)軸上的點有什么特征?
(二)新授
1、引入
結(jié)合教材P63圖2-11和復(fù)習(xí)問題,講解6與-6的絕對值的意義。
2、數(shù)a的絕對值的意義
①幾何意義
一個數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的點到原點的距離。數(shù)a的絕對值記作|a|
舉例說明數(shù)a的絕對值的幾何意義。(按教材P63的.倒數(shù)第二段進行講解。)
強調(diào):表示0的點與原點的距離是0,所以|0|=0
指出:表示“距離”的數(shù)是非負(fù)數(shù),所以絕對值是一個非負(fù)數(shù)。
、诖鷶(shù)意義
把有理數(shù)分成正數(shù)、零、負(fù)數(shù),根據(jù)絕對值的幾何意義可以得出絕對值的代數(shù)意義:一個正數(shù)的絕對值是它本身,一個負(fù)數(shù)的絕對值是它的相反數(shù),0的絕對值是0
用字母a表示數(shù),則絕對值的代數(shù)意義可以表示為:
指出:絕對值的代數(shù)定義可以作為求一個數(shù)的絕對值的方法。
3、例題精講
例1.求8,-8的絕對值。
按教材方法講解。
例2.計算:|2.5|+|-3|-|-3|.
解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3
例3.已知一個數(shù)的絕對值等于2,求這個數(shù)。
解:∵|2|=2,|-2|=2
∴這個數(shù)是2或-2.
五、鞏固練習(xí)
練習(xí)一:教材P641、2,P66習(xí)題2.4A組1、2.
練習(xí)二:
1、絕對值小于4的整數(shù)是____.
2、絕對值最小的數(shù)是____.
已知|2x-1|+|y-2|=0,求代數(shù)式3x2y的值。
六、歸納小結(jié)
本節(jié)課從幾何與代數(shù)兩個方面說明了絕對值的意義,由絕對值的意義可知,任何數(shù)的絕對值都是非負(fù)數(shù)。絕對值的代數(shù)意義可以作為求一個數(shù)的絕對值的方法。
七、布置作業(yè)
教材P66習(xí)題2.4A組3、4、5.
初中數(shù)學(xué)教學(xué)教案 10
一、學(xué)習(xí)目標(biāo):
1、掌握二次根式的運算方法,明確數(shù)的運算順序、運算律及乘法公式在根式的運算中仍然適用。
2、正確運用二次根式的性質(zhì)及運算法則進行二次根式的混合運算。
二、學(xué)習(xí)重點:
正確運用二次根式的.性質(zhì)及運算法則進行二次根式的混合運算。
學(xué)習(xí)難點:二次根式計算的結(jié)果要是最簡二次根式。
三、過程
知識準(zhǔn)備
1、滿足下列條的二次根式是最簡二次根式。
2、回憶有理數(shù),整式混合運算的順序。
3、回憶并整理整式的乘法公式。
方法探究1
⑴(512+23)x15
、(3+10)(2-5)
歸納:
嘗試練習(xí):
、(3+22)x6
⑵(827-53)6
、(6-3+1)x23
、(3-22)(33-2)
、(22-3)(3+2)
、(5-6)(3+2)
方法探究2
、(3+2)(3-2)
⑵(3+25)2
歸納:
嘗試練習(xí):
、(5+1)(5-1)
、(7+5)(5-7)
、(25-32)(25+32)
、(a+b)(a-b)
⑸(3-2)2
、(32-45)2
、(3-22)(22-3)
、(a-b)2
⑼(1-23)(1+23)-(1+3)2
、(3+2-5)(3+2+5)
例題解析
1、計算:(22-3)2011(22+3)2012。
2、若x=10-3,求代數(shù)式x2+6x+11的值。
3、若x=11+72,y=11—72,求代數(shù)式x2-xy+y2的值。
內(nèi)反饋
1、計算12(2-3)=
2、計算⑴(2+3)(2-3)=
、(5-2)2010(5+2)2011=
3、計算:
、12(75+313-48)
⑵(1327-24-323)12
、(23-5)(2+3)
、(5-3+2)(5+3-2)
⑸(312-213+48)÷23
4、已知a=3+2,b=3-2,求下列各式的值。
、臿2-b2
、1a-1b
、莂2-ab+b2
5、若x=3+1,求代數(shù)式x2-2x-3的值。
初中數(shù)學(xué)教學(xué)教案 11
【學(xué)生分析】
大部分學(xué)生思維活躍,肯鉆、肯想、敢說、敢問,對立體圖形認(rèn)識有一定知識積累,有探究、合作等學(xué)習(xí)方法積累,促進學(xué)生知識深化和延伸尤為重要。
【設(shè)計思路】
將電視娛樂節(jié)目的形式植入數(shù)學(xué)課堂,體現(xiàn)用活教材激活課堂的理念思想,方法教學(xué)成為主導(dǎo),指導(dǎo)學(xué)習(xí)方向,復(fù)習(xí)活動貫穿課前、課中,采用分組競賽、分組合作的形式,使學(xué)生在積極主動的狀態(tài)下理解本課重點,疏通并構(gòu)建知識網(wǎng)絡(luò),掌握復(fù)習(xí)方法。
【課前準(zhǔn)備】
每組據(jù)分工專門研究一個立體圖形的特征,整理出3個有關(guān)的涵蓋面寬,較富挑戰(zhàn)性的,主要針對基礎(chǔ)知識的問題。同時,據(jù)猜測準(zhǔn)備好別組涉及問題的答案。
【教學(xué)目標(biāo)】
1、知識目標(biāo):使學(xué)生進一步識記各圖形特征,掌握不同圖形之間的異同,學(xué)會觀察體會幾何圖形間的聯(lián)系和區(qū)別。
2、能力目標(biāo):通過小組競賽合作整理知識框架,提高學(xué)習(xí)的系統(tǒng)性,培養(yǎng)學(xué)生回憶、質(zhì)疑、梳理、歸納、總結(jié)等自主復(fù)習(xí)整理的意識和方法以及能力,同時也加強合作學(xué)習(xí)能力。
3、情感目標(biāo):利用幾何圖形的美,增進學(xué)生對數(shù)學(xué)的興趣,復(fù)習(xí)方法自主構(gòu)建的嘗試,激發(fā)學(xué)生自信心,滲透事物普遍聯(lián)系的辯證唯物主義觀點。
【重難點】
教學(xué)重點
溝通各圖形內(nèi)在聯(lián)系,培養(yǎng)學(xué)生主動整理知識的意識,使學(xué)生掌握一定的復(fù)習(xí)整理方法。
教學(xué)難點
描述幾何圖形特征的語言的準(zhǔn)確性訓(xùn)練,以及知識延伸,進一步發(fā)展學(xué)生空間觀念。
【教學(xué)過程】
一、構(gòu)建幾何圖形的簡單知識網(wǎng)絡(luò),感知平面圖形和立體圖形的密切聯(lián)系。
1、完善幾何圖形知識圖:
師:除了平面圖形,你覺得還有哪類圖形?(立體圖形)
2、感知平面圖形和立體圖形的密切聯(lián)系。
師:這是一個平面圖形還是立體圖形?
師:從它的表面上,你觀察到哪些平面圖形?
3、強調(diào)平面圖形和立體圖形的區(qū)別。
(1)試一試:把下列幾何圖形分類?
(2)你感覺二者的區(qū)別主要是什么?師舉例說明。
強調(diào):各部分是否在同一平面
二、展開復(fù)習(xí)活動,自主系統(tǒng)整理,感知立體圖形和立體圖形的聯(lián)系。
(1)梳理五種立體圖形的基本構(gòu)成,加強和生活聯(lián)系。
1、出示五種立體圖形。
(1)憶一憶:你認(rèn)識這些幾何體嗎?說名稱
(2)暢所欲言:舉出日常生活中和它們類似的物體。
(小組比賽,看誰說得多,讓學(xué)生感覺正是這些基本圖形構(gòu)成我們生活的空間)
(3)議一議,認(rèn)真觀察,識記圖形。
出示情景圖:圖中你熟悉的物體類似于哪些圖形?
2、說出各立體圖形各部分名稱,各字母表示什么?
3、立體圖形分類
師:分兩類,怎么分?為什么?
(二)主動回憶,梳理知識。
1、談話引入:關(guān)于我們要復(fù)習(xí)的知識你想留下深刻清晰的印象嗎?老師給大家介紹一個復(fù)習(xí)的好方法。
2、出示復(fù)習(xí)方法:
關(guān)于要復(fù)習(xí)的'知識
(1)我已知道什么?
(2)你想怎樣去整理它?
(3)怎樣得到更多、更好的整理方法?
(4)動手檢測自己
(5)你還有什么不明白的?
3、據(jù)復(fù)習(xí)方法依次展開活動
(1)關(guān)于立體圖形,我已知道了什么?
以電視節(jié)目“開心辭典”和小組競賽的形式進行。
每組提出關(guān)于本組研究內(nèi)容的三個問題,其他組回答,教師宣布好比賽規(guī)則,充當(dāng)裁判和記分員。
(2)你想怎樣去整理?
、賻熞龑(dǎo)給出學(xué)生整理的方法。
a:正方體、長方體在一塊兒整理......
b:找相同點、不同點
c:據(jù)構(gòu)成名稱分層分類對比整理。
、谛〗M合作:嘗試整理正、長方體的特點
、蹖嵨镎古_展示學(xué)生成果
、軒熣n件演示整理結(jié)果:正、長方體的特征
⑤按上述復(fù)習(xí)整理方法自主整理圓柱、圓錐、球的特征,先獨立整理,再小組交流,展臺展示學(xué)生不同方法的成果,教師課件演示。
三、知識檢測,形成反饋
1、一組判斷題
(1)長方體和正方體都有六個面,而且六個面都相等。
(2)長方體的三條棱就是它的長,寬,高。
(3)上下兩個底面是圓形且相等的形體一定是圓柱。
(4)圓柱的側(cè)面展開后是一個正方形,那么它的底面周長和高一定相等。
(5)圓錐的頂點到底面只有一條垂線段。
(6)從圓柱體的上底面到下底面的任何一條連線都是這個圓柱的高。
(7)正方體的棱長總和是48厘米,它的每條棱長是8厘米。
2、一組填空題
(1)把一個邊長31.4厘米的正方形鐵皮卷成一個圓筒,這個圓筒的底面周長是( )厘米,高是( )厘米。
(2)把一個長94.2米,寬31.4米的長方形鐵皮卷成一個圓筒,這個圓筒的底面周長是( )米,高是( )米。
3、搶答游戲:師說出一些特征,學(xué)生隨時猜幾何圖形的名稱
四、鞏固延伸,再次加強平面圖形和立體圖形的聯(lián)系。
1、點、線、面、體的形成聯(lián)系。
師:觀察三幅運動的圖片,可看成什么幾何圖形在運動?
師:他們的運動又形成了什么幾何圖形?
2、這些立體圖形是由哪個平面圖形旋轉(zhuǎn)而成?
五、總結(jié):我們周圍充滿著數(shù)學(xué),智慧的人塑造了各種幾何美,數(shù)學(xué)幾何美又經(jīng)常裝點我們的生活。
師:你有哪些收獲?(知識方面、方法方面)
六、溫馨提醒:作業(yè)
感受幾何構(gòu)圖之美,學(xué)會運用復(fù)習(xí)方法。
1、①先欣賞平面圖形組成的圖案
、谧鳂I(yè)一:用平面圖形設(shè)計一幅美麗的圖案,配解說詞。
2、①先欣賞各國建筑物
②作業(yè)二:用立體圖形設(shè)計一個美麗的建筑物,配上解說詞。(給小動物設(shè)計家也行,滲透關(guān)愛思想教育)
3、小貓小狗冬天為什么蜷著身子睡覺?......
作業(yè)三:自己用這堂課的復(fù)習(xí)方法整理有關(guān)立體圖形的表面積、體積的知識。
初中數(shù)學(xué)教學(xué)教案 12
教學(xué)目標(biāo)
1.會通過列方程解決“配套問題”;
2.掌握列方程解決實際問題的一般步驟;
3.通過列方程解決實際問題的過程,體會建模思想。
教學(xué)重點
建立模型解決實際問題的一般方法。
教學(xué)難點
建立模型解決實際問題的.一般方法。
學(xué)情分析
1、 在前面已學(xué)過一元一次方程的解法,能夠簡單的運用一元一次方程解決實際問題。
2、 培養(yǎng)學(xué)生分析、解決問題的能力及邏輯思維能力。
教 學(xué)過程
一、復(fù)習(xí)與回顧
問題1:之前我們通過列方程解應(yīng)用問題的過程中,大致包含哪些步驟?
1. 審:審題,分析題目中的數(shù)量關(guān)系;
2. 設(shè):設(shè)適當(dāng)?shù)奈粗獢?shù),并表示未知量;
3. 列:根據(jù)題目中的數(shù)量關(guān)系列方程;
4. 解:解這個方程;
5. 答:檢驗 并答話。
二、應(yīng)用與探究
問題2:應(yīng)用回顧的步驟解決以下問題。
例1 某車間有22名工人,每人每天可以生產(chǎn)1 200個螺釘或2 000個螺母。 1個螺釘 需要配 2個螺母,為使每天生產(chǎn)的螺釘和螺母剛好配套,應(yīng)安排生產(chǎn)螺釘和螺母的工人 各多少名?
三、課堂練習(xí)
1、一套儀器由一個A部件和三個B部件構(gòu)成。 用1 m3鋼材可以做40個A部件或240個B部件。 現(xiàn)要用6 m3鋼材制作這種儀器,應(yīng)用多少鋼材做A部件,多少鋼材 做B部件,恰好配成這種儀器多少套?
2、某糕點廠中秋節(jié)前要制作一批盒裝月餅,每盒中裝2塊大月餅和4塊小月餅。制作1塊大月餅要用0.05kg面粉,1塊小月餅要用0.02kg面粉。 現(xiàn)共有面粉4500kg,制作兩種月餅 應(yīng)各用多少面粉,才能生產(chǎn)最多的盒裝月餅?
四、小結(jié)與歸納
問題4:用一元一次方程解決實際問題的基本過程有幾個步驟? 分別是什么?
五、課后作業(yè)
教科書第106頁習(xí)題3.4 第2、3、7題;
1、教師利用復(fù)習(xí)提問的方式導(dǎo)入,幫助學(xué)生掌握列方程解應(yīng)用題的步驟。
2、教師展示例題,并 巡視學(xué)生獨立完成情況,引導(dǎo)學(xué)生分析問題并解決問題。
3、教師展示練習(xí)題,引導(dǎo)學(xué)生分析問題并解決問題,并巡視。
4、教師通過提問,讓學(xué)生進行歸納小結(jié)。
1、學(xué)生回憶并獨立回答。
2、學(xué)生先觀看課件,先獨立思考,再合作交流解決問題 。
3、學(xué)生先觀看課件并解決問題。
4、學(xué)生自主歸納本節(jié)課所學(xué)內(nèi)容。
不能解決問題。
教師展示解答過程。
初中數(shù)學(xué)教學(xué)教案 13
一、教學(xué)目標(biāo):
1、知道一次函數(shù)與正比例函數(shù)的定義;
2、理解掌握一次函數(shù)的圖象的特征和相關(guān)的性質(zhì);體會數(shù)形結(jié)合思想。
3、弄清一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系;
4、 掌握直線的平移法則簡單應(yīng)用 ;
5、能應(yīng)用本章的基礎(chǔ)知識熟練地解決數(shù)學(xué)問題。
二、教學(xué)重、難點:
重點:初步構(gòu)建比較系統(tǒng)的函數(shù)知識體系, 能應(yīng)用本章的基礎(chǔ)知識熟練地解決數(shù)學(xué)問題。
難點:對 直線的平移法則的理解,體會數(shù)形結(jié)合思想。
三、教學(xué)媒體:
大屏幕。
四、教學(xué)設(shè)計簡介:
因為這是初三總復(fù)習(xí)節(jié)段的復(fù)習(xí)課,在這之前已經(jīng)復(fù)習(xí)了變量、函數(shù)的定義、表示法及圖象,而本節(jié)的教學(xué)任務(wù)是一次函數(shù)的基礎(chǔ)知識及其簡單的應(yīng)用,沒有涉及實際應(yīng)用。為了節(jié)約學(xué)生的時間,打造高效課堂,我開門見山,直接向?qū)W生展示 教學(xué)目標(biāo),然后讓學(xué)生根據(jù)本節(jié)課的復(fù)習(xí)目標(biāo)進行 聯(lián)想回顧,變被動學(xué)習(xí)為主動學(xué)習(xí)。例如,在“圖象及其性質(zhì)”環(huán)節(jié)中,老師讓學(xué)生自己說出一次函數(shù)圖象的形狀、位置及增減性,不完整的可讓其他學(xué)生補充 糾正 。這樣,使無味的復(fù)習(xí)課變得活躍一些,增強學(xué)習(xí)氣氛。 隨后教師就用大屏幕展示出標(biāo)準(zhǔn)答案,然后教師組織學(xué)生以比賽的形式做一些針對性的練習(xí)。為了鞏固知識點,學(xué)生解決每一個問題時都要求其說出所運用的知識點。
五、教學(xué)過程:
1、一次函數(shù)與正比例函數(shù)的定義 :
一次函數(shù):一般地,若y=kx+b (其中k,b 為常數(shù)且k ≠0 ),那么y 是x 的一次函數(shù)正比例函數(shù):對于 y=kx+b ,當(dāng)b=0, k ≠0 時,有y=kx, 此時稱y 是x 的正比例函數(shù),k 為正比例系數(shù)。
2、一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系:
(1 )從解析式看:y=kx+b(k ≠0 ,b 是常數(shù)) 是一次函數(shù);而y=kx(k ≠0 , b=0) 是正比例函數(shù),顯然正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)是正比例函數(shù)的推廣。
(2 )從圖象看:正比例函數(shù)y=kx(k ≠0) 的圖象是過原點(0 ,0 )的一條直線;而一次函數(shù)y=kx+b(k ≠0) 的圖象是過點(0 ,b )且與y=kx 平行的一條直線。
基礎(chǔ)訓(xùn)練一:
1、指出下列函數(shù)中的正比例函數(shù)和一次函數(shù):
、賧 = x +1 ;
②y = - x/5 ;
③y = 3/x ;
、躽 = 4x ;
、輞 =x (3x+1 )-3x ;
、辻=3 (x-2 );
、遹=x/5-1/2 。
2、下列給出的`兩個變量中,成正比例函數(shù)關(guān)系的是:A、少年兒童的身高和年齡;B、長方形的面積一定,它的長與寬;C、圓的面積和它的半徑;D、勻速運動中速度固定時,路程與時間的關(guān)系。
3、對于函數(shù) y = (m+1 )x + 2- n ,當(dāng) m、n 滿足什么條件時為正比例函數(shù)?當(dāng)m、n 滿足什么條件時為一次函數(shù)?
3、正比例函數(shù)、一次函數(shù)的圖象和性質(zhì):
7、k,b 的符號與直線y=kx+b(k ≠0) 的位置關(guān)系:
k 的符號決定了直線y=kx+b(k ≠0 );b 的符號決定了直線y=kx+b 與y 軸的交點。當(dāng)k>0 時,直線; 當(dāng)k<0 時,直線。
當(dāng)b >0 時,直線交于y軸的;當(dāng)b <0 時,直線交于y軸的。
為此直線y=kx+b(k ≠0) 的位置有4 種情況,分別是:
當(dāng)k>0 , b >0 時,直線經(jīng)過 ;當(dāng)k>0 , b <0 時,直線經(jīng)過 ;
當(dāng)k<0 ,b >0 時,直線經(jīng)過 ;當(dāng)k<0 ,b <0 時,直線經(jīng)過 。
基礎(chǔ)訓(xùn)練二:
1、寫出一個圖象經(jīng)過點(1 ,- 3 )的函數(shù)解析式為 。
2、直線y =- 2X - 2 不經(jīng)過第 象限,y 隨x 的增大而 。
3、如果P (2 ,k )在直線y=2x+2 上,那么點P 到x 軸的距離是。
4、已知正比例函數(shù) y =(3k-1)x,若y 隨x 的增大而增大,則k 的取值范圍是。
5、過點(0 ,2 )且與直線y=3x 平行的直線是 。
6、若正比例函數(shù)y = (1-2m )x 的圖像過點A (x1 ,y1 )和點B (x2 ,y2 )當(dāng)x1 <x2 時,y1 >y2, 則m 的取值范圍是。
7、若函數(shù)y = ax+b 的圖像過一、二、三象限,則ab 0 。
8、若y-2 與x-2 成正比例,當(dāng)x=-2 時,y=4, 則x= 時,y = -4 。
9、直線y=- 5x+b 與直線y=x-3 都交y 軸上同一點,則b 的值為 。
10、將直線y = -2x-2 向上平移2 個單位得到直線 ;將它向左平移2 個單位得到直線 。
六、教學(xué)反思:
本節(jié)課是我這學(xué)期做的一節(jié)匯報課。教學(xué)任務(wù)基本完成,最后剩下一道綜合訓(xùn)練題沒來得及探討,留作了課后作業(yè)。從本節(jié)課的設(shè)計上看,我自認(rèn)為知識全面,講解透徹,條理清晰,系統(tǒng)性強,講練結(jié)合,訓(xùn)練到位,一節(jié)課下來后學(xué)生在基礎(chǔ)知識方面不會有什么漏洞。因為復(fù)習(xí)課的課堂容量比較大,需要展示給學(xué)生的知識點比較多,訓(xùn)練題也比較多,所以我選擇在多媒體上課。應(yīng)該說在設(shè)計之初,我是在兩種方案中選出的一種為學(xué)生節(jié)省時間的復(fù)習(xí)方法,課前的工作全由教師完成,教師認(rèn)真?zhèn)湔n,查閱資料,搜集有針對性的訓(xùn)練題,學(xué)生只要課堂上能按照教師的思路去做就很高效了?蓻]想到,在課的進行中,我就聽到有的教師在切切私語,都是初三學(xué)生了,怎么好象沒有幾個學(xué)習(xí)的。我也感覺到這節(jié)課確實有一大部分學(xué)生注意力渙散,沒有全身心地投入到學(xué)習(xí)中去。以致于面對簡單的問題都卡,思維不連續(xù)。糾其原因,是我沒有把學(xué)生學(xué)習(xí)的積極性充分調(diào)動起來,學(xué)生沒有發(fā)揮出學(xué)習(xí)的主動性。課堂訓(xùn)練以競賽的形式進行,似乎有一定的刺激性,但缺少后續(xù)的刺激活動,學(xué)生沒有保持住持久的緊張狀態(tài)。
課后我找到了學(xué)委和科代表,請他們協(xié)助我一同反思本節(jié)課的優(yōu)缺點,并把在以往的章末復(fù)習(xí)時曾采取過的另一種復(fù)習(xí)方案闡述給他們聽,就是課前先把所有的復(fù)習(xí)任務(wù)都交給學(xué)生完成,教師指導(dǎo)學(xué)生瀏覽教材、查閱資料歸納本章的基本概念、基本性質(zhì)、基本方法,并收集與每個知識點相關(guān)的有針對性的問題,也可以自己編題,同時要把每一個問題的答案做出來,盡量要一題多解。再由小組長組織小組成員匯編,在匯編過程中要去粗取精。課堂就是以小組為單位學(xué)生展示自己的舞臺,在這個舞臺上學(xué)生是主角,在這個舞臺上學(xué)生可以成果共享,在這個舞臺上學(xué)生收獲著自己的收獲。臺上他們是主角,臺下他們也是主角。
但是在初三總復(fù)習(xí)時,我理解學(xué)生的忙,所以能包辦的我就一律代做,以為這就是幫學(xué)生減輕負(fù)擔(dān),學(xué)生自己去做的事是少了,可是需要學(xué)生被動記憶的知識多;教師把一節(jié)設(shè)計的井井有條,想要學(xué)生在這一節(jié)課里收獲更多,但被動的學(xué)生并沒有全身心的投入到學(xué)生中去,降低了課堂效率,又把好多任務(wù)壓到課下,最后教師減輕學(xué)生的課后負(fù)擔(dān)的想法還是落空了。
初中數(shù)學(xué)教學(xué)教案 14
目標(biāo)
1聯(lián)系生活中的具體事物,通過觀察和動手操作,初步體會生活中的對稱現(xiàn)象,認(rèn)識軸對稱圖形的基本特征,會識別并能做出一些簡單的軸對稱圖形。
2.在認(rèn)識、制作和欣賞軸對稱圖形的過程中,感受到物體圖形的對稱美,激發(fā)學(xué)生對數(shù)學(xué)學(xué)習(xí)的積極情感。
重點難點
理解軸對稱圖形的基本特征
教具
準(zhǔn)備 剪刀、紙(含平行四邊形、字母N S)、教學(xué)掛圖、直尺
教學(xué)方法
手段 觀察、比較、討論、動手操作
教學(xué)過程
一。新課
1.教師取一個門框上固定門的`鉸連讓學(xué)生觀察是不是左右對稱?
2.出示教學(xué)掛圖:天安門、飛機、獎杯的實物圖片
將實物圖片進一步抽象為平面圖形,對折以后問學(xué)生發(fā)現(xiàn)了什么?
生:對折后兩邊能完全重合。
師;對折后能完全重合的圖形就是軸對稱圖形。折痕所在的這條直線叫做對稱軸。
教師先示范,讓學(xué)生認(rèn)識天安門城樓圖的對稱軸,然后讓學(xué)生再找出飛機圖、獎杯圖的對稱軸各在哪里。
3.練習(xí)題:(出示小黑板)
(1)P57“試一試”
判斷哪幾個圖形是軸對稱圖形?試著畫出對稱軸。
估計學(xué)生會將平行四邊形看作是軸對稱圖形,可讓兩個學(xué)生到講臺前用平行四邊形紙對折一下,看對折以后兩部分是否完全重合。由此得出結(jié)論;平行四邊形不是軸對稱圖形。
(2)用剪刀和紙剪一個軸對稱圖形。
教學(xué)
過程 二。練習(xí)
1.出示掛圖:(p58“想想做做”第1題)
判斷哪些圖形是軸對稱圖形?
生:豎琴圖、轎車圖、五角星圖、鐵錨圖、科技標(biāo)志圖、中國農(nóng)業(yè)銀行標(biāo)志圖
師:鑰匙圖和紫荊花圖為什么不是?
生:因為對折以后兩部分沒有完全重合。
2.看書p58“想想做做”第2題
判斷哪些英文字母是軸對稱圖形?
生:A、C、T、M、X(有可能有的學(xué)生沒有選C,還有可能有的學(xué)生選N、S、Z)
師:沒有選C的同學(xué)除了豎著對折,看看橫著、斜著對折你有沒有去試一試?認(rèn)為N、S、Z是軸對稱圖形的我請兩個學(xué)生到講臺前用表示字母N、S的紙對折一下,看看對折以后兩部分有沒有完全重合?
學(xué)生試完以后會發(fā)現(xiàn)兩部分沒有完全重合。
教師再將字母N橫過來就變成了字母Z,同樣道理,兩部分也不會完全重合。
初中數(shù)學(xué)教學(xué)教案 15
一、學(xué)情分析
八年級學(xué)生具有強烈的好勝心和求知欲,抽象思維趨于成熟,形象直觀思維能力較強,具有一定的獨立思考、實踐操作、合作交流、歸納概括等能力,能進行簡單的推理
二、教材分析
這節(jié)課是人教版八年級第十八章第一節(jié)的內(nèi)容,教學(xué)內(nèi)容是勾股定理公式的推導(dǎo)、證明及其簡單的應(yīng)用。本節(jié)課是在學(xué)生已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進行學(xué)習(xí)的,勾股定理是幾何中最重要的定理之一,它揭示的是直角三角形中三條邊之間的數(shù)量關(guān)系,將數(shù)與形密切聯(lián)系起來,為以后學(xué)習(xí)四邊形、圓、解直角三角形等數(shù)學(xué)知識奠定了基礎(chǔ)。它有著豐富的歷史背景,在數(shù)學(xué)的發(fā)展中起著重要的作用,在現(xiàn)實生活中也有著廣泛的應(yīng)用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進一步的認(rèn)識和理解。
三、教學(xué)目標(biāo)設(shè)計
知識與技能
探索勾股定理的內(nèi)容并證明,能夠運用勾股定理進行簡單計算和運用
過程與方法
(1)通過觀察分析,大膽猜想,探索勾股定理,培養(yǎng)學(xué)生動手操作、合作交流、邏輯推理的能力。
。2)在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察—猜想—歸納—驗證”的數(shù)學(xué)過程,并體會數(shù)形結(jié)合和從特殊到一般的思想方法。
情感態(tài)度與價值
(1)在探索勾股定理的過程中,培養(yǎng)學(xué)生的合作交流意識和探索精神,增進數(shù)學(xué)學(xué)習(xí)的信心,感受數(shù)學(xué)之美,探究之趣。
。2)利用遠(yuǎn)程教育資源介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國和熱愛祖國悠久文化的思想感情,培養(yǎng)學(xué)生的民族自豪感和鉆研精神。
四、教學(xué)重點難點
教學(xué)重點
探索和證明勾股定理 ·教學(xué)難點
用拼圖的方法證明勾股定理
五、教學(xué)方法
。▽W(xué)法)“引導(dǎo)探索法”
。ㄗ灾魈骄,合作學(xué)習(xí),采用小組合作的方法。
六、教具準(zhǔn)備
課件、三角板
七、教學(xué)過程設(shè)計
教學(xué)環(huán)節(jié)1
教學(xué)過程:創(chuàng)設(shè)情境探索新知 教師活動:出示第24屆國際數(shù)學(xué)家大會的會徽的圖案向?qū)W生提問
。1) 你見過這個圖案嗎?
。2) 你聽說過“勾股定理”嗎?
學(xué)生活動:學(xué)生思考回答
設(shè)計意圖:目的在于從現(xiàn)實生活中提出“趙爽弦圖”,進一步激發(fā)學(xué)生積極主動地投入到探索活動中,同時為探索勾股定理提供背景材料。
教學(xué)環(huán)節(jié)2 教學(xué)過程:實驗操作獲取新知歸納驗證完善新知
教師活動:出示課件,引導(dǎo)學(xué)生探索
學(xué)生活動:猜想實驗合作交流畫圖測量拼圖驗證
設(shè)計意圖:滲透從特殊到一般的數(shù)學(xué)思想。為學(xué)生提供參與數(shù)學(xué)活動的時間和空間,發(fā)揮學(xué)生的主體作用;讓學(xué)生自己動手拼出趙爽弦圖,培養(yǎng)他們學(xué)習(xí)數(shù)學(xué)的`成就感。通過拼圖活動,使學(xué)生對定理的理解更加深刻,體會數(shù)學(xué)中的數(shù)形結(jié)合思想,調(diào)動學(xué)生思維的積極性,激發(fā)學(xué)生探求新知的欲望。給學(xué)生充分的時間與空間討論、交流,鼓勵學(xué)生敢于發(fā)表自己的見解,感受合作的重要性。
教學(xué)環(huán)節(jié)3 教學(xué)過程:解決問題應(yīng)用新知
教師活動:出示例題和練習(xí)
學(xué)生活動:交流合作,解決問題
設(shè)計意圖:通過運用勾股定理對實際問題的解釋和應(yīng)用,培養(yǎng)學(xué)生從身邊的事物中抽象出幾何模型的能力,使學(xué)生更加深刻地認(rèn)識數(shù)學(xué)的本質(zhì):數(shù)學(xué)來源于生活,并能服務(wù)于生活,順利解決如何將實際問題轉(zhuǎn)化為求直角三角形邊長的問題,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識。
教學(xué)環(huán)節(jié)4 教學(xué)內(nèi)容:課堂小結(jié)鞏固新知布置作業(yè)
教師活動:引導(dǎo)學(xué)生小結(jié)
學(xué)生活動:討論交流、自由發(fā)言
設(shè)計意圖:既引導(dǎo)學(xué)生從面積的角度理解勾股定理,又從能力、情感、態(tài)度等方面關(guān)注學(xué)生對課堂整體感受,在輕松愉快的氣氛中體會收獲的喜悅。
通過布置課外作業(yè),給學(xué)生留有繼續(xù)學(xué)習(xí)的空間和興趣,及時獲知學(xué)生對本節(jié)課知識的掌握情況,適當(dāng)?shù)恼{(diào)整教學(xué)進度和教學(xué)方法,并對學(xué)習(xí)有困難的學(xué)生給與指導(dǎo)。
八、板書設(shè)計
勾股定理:如果直角三角形的兩直角邊分別為a和b,斜邊為c,那么 a2+b2=c2。
九、習(xí)題拓展
如圖,將長為10米的梯子AC斜靠在墻上,BC長為6米。
(1)求梯子上端A到墻的底端B的距離AB。
。2)若梯子下部C向后移動2米到C1點,那么梯子上部A向下移動了多少米?
十、作業(yè)設(shè)計
1、收集有關(guān)勾股定理的證明方法, 下節(jié)課展示、交流。
2、做一棵奇妙的勾股樹(選做)
【初中數(shù)學(xué)教學(xué)教案】相關(guān)文章:
初中數(shù)學(xué)教學(xué)教案及反思10-08
2023初中數(shù)學(xué)教學(xué)教案02-14
初中數(shù)學(xué)教學(xué)教案匯總10-08
初中數(shù)學(xué)教學(xué)教案15篇12-19
初中數(shù)學(xué)教學(xué)教案(精選20篇)06-28
初中數(shù)學(xué)教學(xué)教案(精選30篇)07-12