亚洲色影视在线播放_国产一区+欧美+综合_久久精品少妇视频_制服丝袜国产网站

總結

初三圓知識點總結

時間:2024-06-07 23:57:35 總結 我要投稿
  • 相關推薦

初三圓知識點總結

  圓可以看作是到定點的距離等于定長的點的集合。關于圓的知識,你還知道多少?以下是小編整理的初三圓知識點總結,歡迎閱讀。

初三圓知識點總結

  初三圓知識點總結1

  1、 圓的有關概念:

  (1)確定一個圓的要素是圓心和半徑。

 。2)

  ①連結圓上任意兩點的線段叫做弦。

 、诮(jīng)過圓心的弦叫做直徑。

 、蹐A上任意兩點間的部分叫做圓弧,簡稱弧。

 、苄∮诎雸A周的圓弧叫做劣弧。

 、荽笥诎雸A周的圓弧叫做優(yōu)弧。

 、拊谕瑘A或等圓中,能夠互相重合的弧叫做等弧。

 、唔旤c在圓上,并且兩邊和圓相交的角叫圓周角。

  ⑧經(jīng)過三角形三個頂點可以畫一個圓,并且只能畫一個,經(jīng)過三角形三個頂點的圓叫做三角形的外接圓,三角形外接圓的圓心叫做這個三角形的外心,這個三角形叫做這個圓的內(nèi)接三角形,外心是三角形各邊中垂線的交點;直角三角形外接圓半徑等于斜邊的一半。

 、崤c三角形各邊都相切的圓叫做三角形的內(nèi)切圓,三角形的內(nèi)切圓的圓心叫做三角形的內(nèi)心,這個三角形叫做圓外切三角形,三角形的內(nèi)心就是三角形三條內(nèi)角平分線的交點。

  2、 圓的有關性質(zhì)

 。1)定理在同圓或等圓中,如果圓心角相等,那么它所對的弧相等,所對的弦相等,所對的弦的弦心距相等。推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對的其余各組量都分別相等。

 。2)垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。

  推論1:

  ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。

  ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。

 、燮椒窒宜鶎Φ囊粭l弧的`直徑,垂直平分弦,并且平分弦所對的另一條弧。

  推論2:圓的兩條平行弦所夾的弧相等。

 。3)圓周角定理:一條弧所對的圓周角等于該弧所對的圓心角的一半。推論1在同圓或等圓中,同弧或等弧所對的圓周角相等,相等的圓周角所對的弧也相等。推論2半圓或直徑所對的圓周角都相等,都等于90 。90 的圓周角所對的弦是圓的直徑。推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。

 。4)切線的判定與性質(zhì):判定定理:經(jīng)過半徑的外端且垂直與這條半徑的直線是圓的切線。性質(zhì)定理:圓的切線垂直于經(jīng)過切點的半徑;經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點;經(jīng)過切點切垂直于切線的直線必經(jīng)過圓心。

 。5)定理:不在同一條直線上的三個點確定一個圓。

 。6)圓的切線上某一點與切點之間的線段的長叫做這點到圓的切線長;切線長定理:從圓外一點可以引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分這兩條切線的夾角。

 。7)圓內(nèi)接四邊形對角互補,一個外角等于內(nèi)對角;圓外切四邊形對邊和相等;

 。8)弦切角定理:弦切角等于它所它所夾弧對的圓周角。

 。9)和圓有關的比例線段:相交弦定理:圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等。如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項。切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項。從圓外一點引圓的兩條割線,這一點到每條割線與圓交點的兩條線段長的積相等。

 。10)兩圓相切,連心線過切點;兩圓相交,連心線垂直平分公共弦。

  初三圓知識點總結2

  一、圓

  1、圓的有關性質(zhì)

  在一個平面內(nèi),線段OA繞它固定的一個端點O旋轉一周,另一個端點A隨之旋轉所形成的圖形叫圓,固定的端點O叫圓心,線段OA叫半徑。

  由圓的意義可知:

  圓上各點到定點(圓心O)的距離等于定長的點都在圓上。

  就是說:圓是到定點的距離等于定長的點的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點的集合。

  圓的外部可以看作是到圓心的距離大于半徑的點的集合。連結圓上任意兩點的線段叫做弦,經(jīng)過圓心的弦叫直徑。圓上任意兩點間的部分叫圓弧,簡稱弧。

  圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu);小于半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。

  圓心相同,半徑不相等的兩個圓叫同心圓。

  能夠重合的兩個圓叫等圓。

  同圓或等圓的半徑相等。

  在同圓或等圓中,能夠互相重合的弧叫等弧。

  二、過三點的圓

  l、過三點的圓

  過三點的圓的作法:利用中垂線找圓心

  定理不在同一直線上的三個點確定一個圓。

  經(jīng)過三角形各頂點的圓叫三角形的外接圓,外接圓的圓心叫外心,這個三角形叫圓的內(nèi)接三角形。

  2、反證法

  反證法的三個步驟:

 、偌僭O命題的結論不成立;

 、趶倪@個假設出發(fā),經(jīng)過推理論證,得出矛盾;

 、塾擅艿贸黾僭O不正確,從而肯定命題的結論正確。

  例如:求證三角形中最多只有一個角是鈍角。

  證明:設有兩個以上是鈍角

  則兩個鈍角之和>180°

  與三角形內(nèi)角和等于180°矛盾。

  ∴不可能有二個以上是鈍角。

  即最多只能有一個是鈍角。

  三、垂直于弦的直徑

  圓是軸對稱圖形,經(jīng)過圓心的`每一條直線都是它的對稱軸。

  垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。

  推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。

  弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。

  平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個條弧。

  推理2:圓兩條平行弦所夾的弧相等。

  四、圓心角、弧、弦、弦心距之間的關系

  圓是以圓心為對稱中心的中心對稱圖形。

  實際上,圓繞圓心旋轉任意一個角度,都能夠與原來的圖形重合。

  頂點是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。

  定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。

  推理:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應的其余各組量都分別相等。

  五、圓周角

  頂點在圓上,并且兩邊都和圓相交的角叫圓周角。

  推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

  推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

  推理3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。

  由于以上的定理、推理,所添加輔助線往往是添加能構成直徑上的圓周角的輔助線。

  初三圓知識點總結3

  圓的初步認識

  一、圓及圓的相關量的定義(28個)

  1、平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。

  2、圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經(jīng)過圓心的弦叫做直徑。

  3、頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。

  4、過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓,其圓心稱為內(nèi)心。

  5、直線與圓有3種位置關系:無公共點為相離;有2個公共點為相交;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。

  6、兩圓之間有5種位置關系:無公共點的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。

  7、在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。

  二、有關圓的字母表示方法(7個)

  圓--⊙ 半徑r 弧--⌒ 直徑d

  扇形弧長/圓錐母線l 周長C 面積S三、有關圓的基本性質(zhì)與定理(27個)

  1、點P與圓O的位置關系(設P是一點,則PO是點到圓心的距離):

  P在⊙O外,POP在⊙O上,PO=r;P在⊙O內(nèi),PO

  2、圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。

  3、垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。

  4、在同圓或等圓中,如果2個圓心角,2個圓周角,2條弧,2條弦中有一組量相等,那么他們所對應的其余各組量都分別相等。

  5、一條弧所對的圓周角等于它所對的圓心角的一半。

  6、直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

  7、不在同一直線上的3個點確定一個圓。

  8、一個三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形3個頂點距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點,到三角形3邊距離相等。

  9、直線AB與圓O的位置關系(設OPAB于P,則PO是AB到圓心的距離):

  AB與⊙O相離,POAB與⊙O相切,PO=r;AB與⊙O相交,PO

  10、圓的切線垂直于過切點的直徑;經(jīng)過直徑的一端,并且垂直于這條直徑的直線,是這個圓的切線。

  11、圓與圓的位置關系(設兩圓的半徑分別為R和r,且Rr,圓心距為P):

  外離P外切P=R+r;相交R-r

  三、有關圓的計算公式

  1、圓的周長C=2d

  2、圓的面積S=s=

  3、扇形弧長l=nr/180

  4、扇形面積S=n/360=rl/2

  5、圓錐側面積S=rl

  四、圓的方程

  1、圓的.標準方程

  在平面直角坐標系中,以點O(a,b)為圓心,以r為半徑的圓的標準方程是

  (x-a)^2+(y-b)^2=r^2

  2、圓的一般方程

  把圓的標準方程展開,移項,合并同類項后,可得圓的一般方程是

  x^2+y^2+Dx+Ey+F=0

  和標準方程對比,其實D=-2a,E=-2b,F=a^2+b^2

  相關知識:圓的離心率e=0、在圓上任意一點的曲率半徑都是r、

  五、圓與直線的位置關系判斷

  鏈接:圓與直線的位置關系(一、5)

  平面內(nèi),直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關系判斷一般方法是

  討論如下2種情況:

  (1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

  代入x^2+y^2+Dx+Ey+F=0,即成為一個關于x的一元二次方程f(x)=0、

  利用判別式b^2-4ac的符號可確定圓與直線的位置關系如下:

  如果b^2-4ac0,則圓與直線有2交點,即圓與直線相交

  如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切

  如果b^2-4ac0,則圓與直線有0交點,即圓與直線相離

  (2)如果B=0即直線為Ax+C=0,即x=-C/A、它平行于y軸(或垂直于x軸)

  將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2

  令y=b,求出此時的兩個x值x1,x2,并且我們規(guī)定x1

  當x=-C/Ax2時,直線與圓相離

  當x1

  當x=-C/A=x1或x=-C/A=x2時,直線與圓相切

  圓的定理:

  1、不在同一直線上的三點確定一個圓。

  2、垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1

  ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2

  1、圓的兩條平行弦所夾的弧相等

  3、圓是以圓心為對稱中心的中心對稱圖形

  4、圓是定點的距離等于定長的點的集合

  5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

  6、圓的外部可以看作是圓心的距離大于半徑的點的集合

  初三圓知識點總結4

  5.1圓

  1、定義:圓是到定點的距離等于定長的點的集合

  2、點與圓的位置關系:

  如果⊙O的半徑為r,點P到圓心O的距離為d,那么

  點P在圓內(nèi),則dr;

  點P在圓上,則dr;

  點P在圓外,則dr;反之亦成立。

  5.2圓的對稱性

  一、圓是中心對稱圖形,圓心是它的對稱中心。

  定理:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應的其余各組量都分別相等。

  圓心角的度數(shù)與它所對的弧的度數(shù)相等。

  二、圓是軸對稱圖形,過圓心的'任意一條直線都是它的對稱軸。

  垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。

  5.3圓周角

  定義:頂點在圓上,并且兩邊都和圓相交的角叫做圓周角

  定理:同弧或等弧所對的圓周角相等,都等于該弧所對的圓心角的一半。

  定理:直徑(或半圓)所對的圓周角是直角。90o的圓周角所對的弦是直徑。

  5.4確定圓的條件

  結論:不在同一條直線上的三點確定一個圓

  三角形的外接圓(三角形的外心):三角形的外心是三角形中3邊垂直平分線的交點,三角形的外心到三角形各頂點的距離相等。

  注:直角三角形的外心是斜邊的中點,外接圓的半徑等于斜邊的一半。

  5.5直線與圓的位置關系

  一、三種位置關系:相交、相切、相離

  如果⊙O的半徑為r,圓心O到直線l的距離為d,那么

  直線l與⊙O相交,則dr;

  直線l與⊙O相切,則dr;

  直線l與⊙O相離,則dr;反之亦成立。

  二、圓的切線的性質(zhì)及判定

  定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  兩種方法:連半徑,證垂直;作垂直,證半徑

  定理:圓的切線垂直于過切點的半徑

  三角形的內(nèi)切圓(三角形的內(nèi)心):三角形的內(nèi)心是三角形中3條角平分的交點,三角形的內(nèi)心到三角形各邊的距離相等。

  注:求三角形的內(nèi)切圓的半徑通常用面積法,特殊地,直角三角形內(nèi)切圓的半徑=a?b?c(其中c為斜邊) 2

  切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,這點和圓心的連線平分兩條切線的夾角。

  5.6圓與圓的位置關系

  五種位置關系:外離、外切、相交、內(nèi)切、內(nèi)含

  閱讀材料:如果兩個圓相切,那么切點一定在連心線上相交兩圓的連心線垂直平分兩圓的公共弦。

  5.7正多邊形與圓

  各邊相等、各角也相等的多邊形叫做正多邊形。

  正多邊形都是軸對稱圖形,一個正n邊形共有n條對稱軸,每條對稱軸都通過正n邊形的中心。一個正多邊形,如果有偶數(shù)條邊,那么它既是軸對稱圖形,又是中心對稱圖形。

  注:與正多邊形有關的計算

  初三圓知識點總結5

  1.圓中心的一點叫圓心,用O表示。一端在圓心,另一端在圓上的線段叫半徑,用r表示。

  兩端都在圓上,并過圓心的線段叫直徑,用d表示。

  2.圓有無數(shù)條半徑,有無數(shù)條直徑。

  3.圓心決定圓的位置,半徑?jīng)Q定圓的大小。

  4.把圓對折,再對折就能找到圓心。

  5.圓是軸對稱圖形,直徑所在的直線是圓的對稱軸。圓有無數(shù)條對稱軸。

  6.在同一個圓里,直徑的長度是半徑的2倍,可以表示為d=2r或r=d/2.

  圓的周長

  8.圓的周長除以直徑的商是一個固定的數(shù),叫做圓周率,用字母表示,計算時通常取3.14.

  9.C=d或C=r. 半圓的周長

  10. 1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84

  7=21.98 8=25.12 9=28.26 10=31.4

  圓的面積

  11.用S表示圓的面積, r表示圓的半徑,那么S=r^2 S環(huán)=(R^2-r^2)

  12. 11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256

  17^2=289 18^2=324 19^2=361 20^2=400

  13.周長相等時,圓的面積最大。面積相等時,圓的周長最小。

  面積相同時,長方形的周長最長,正方形居中,圓周長最短。

  周長相同時,圓面積最大,正方形居中,長方形面積最小。

  周長相同時,圓面積最大,利用這一特點,籃子、盤子做成圓形。

  第四單元:比的認識

  15.兩個數(shù)相除,又叫做這兩個數(shù)的比。比的后項不能為0.

  16.比的前項和后項同時乘上或除以一個相同的數(shù)(0除外)。比值不變,這叫做比的基本性質(zhì)。由于在平面直角坐標系中,先畫X軸,而X軸上的坐標表示列。先用小括號將兩個數(shù)括起來,再用逗號將兩個數(shù)隔開。括號里面的數(shù)由左至右為列數(shù)和行數(shù)。

  列數(shù)與行數(shù)必須是具體的數(shù),而不能用字母如(X,5)表示,它表述一條橫線,(5,Y)它表示一條豎線,都不能確定一個點。

  二、分數(shù)乘法

  分數(shù)乘法意義:1、分數(shù)乘整數(shù)是求幾個相同加數(shù)的和的簡便運算,與整數(shù)乘法的意義相同。

  2、分數(shù)乘分數(shù)是求一個數(shù)的幾分之幾是多少。

  分數(shù)的化簡:分子、分母同時除以它們的最大公因數(shù)。

  關于分數(shù)乘法的計算:可在乘的過程中約分,提倡在計算過程中約分,這樣簡便。

  分數(shù)的基本性質(zhì):分子分母同時乘或者除以一個相同的數(shù)時(0除外),分數(shù)值不變。

  倒數(shù)的意義:乘積為1的兩個數(shù)互為倒數(shù)。

  特別強調(diào):互為倒數(shù),即倒數(shù)是兩個數(shù)的關系,它們互相依存,倒數(shù)不能單獨存在。

  求倒數(shù)的方法:

  1、求分數(shù)的倒數(shù)是交換分子分母的位置。

  2、求整數(shù)的倒數(shù)是把整數(shù)看做分母是1的分數(shù),再交換分子分母的位置。

  1的倒數(shù)是它本身。因為1*1=1

  0沒有倒數(shù)。0乘任何數(shù)都得0=0*1,1/0(分母不能為0)

  三、分數(shù)除法

  分數(shù)除法是分數(shù)乘法的逆運算,就是已知兩個數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算。

  除以一個數(shù)是乘這個數(shù)的倒數(shù),除以幾就是乘這個數(shù)的幾分之一。

  分數(shù)除法的.基本性質(zhì):強調(diào)0除外

  比:兩個數(shù)相除也叫兩個數(shù)的比。比表示兩個數(shù)的關系,可以寫成比的形式,也可以用分數(shù)表示,但仍讀幾比幾。比值是一個數(shù),可以是整數(shù),分數(shù),也可以是小數(shù)。比可以表示兩個相同量的關系,即倍數(shù)關系。也可以表示兩個不同量的比,得到一個新量。例:路程/速度=時間。

  化簡比:

  1、用比的前項和后項同時除以它們的最大公約數(shù)。

  2、兩個分數(shù)的比,用前項后項同時乘分母的最小公倍數(shù),再按化簡整數(shù)比的方法來化簡。

  3、兩個小數(shù)的比,向右移動小數(shù)點的位置。也是先化成整數(shù)比。

  比和除法、分數(shù)的區(qū)別:除法是一種運算,分數(shù)是一個數(shù),比表示兩個數(shù)的關系。

  常用來做判斷的:

  一個數(shù)除以小于1的數(shù),商大于被除數(shù)。

  一個數(shù)除以1,商等于被除數(shù)。

  一個數(shù)除以大于1的數(shù),商小于被除數(shù)。

  五、百分數(shù)

  百分數(shù)的約分:百分數(shù)化成分數(shù),寫成分數(shù)形式,再約分。

  分數(shù)表是一個數(shù),也可以表示兩個數(shù)的關系,百分數(shù)只表示兩個數(shù)的關系,沒有單位。

  百分數(shù)的意義:表示一個數(shù)是另一個數(shù)的百分之幾,也叫百分率或者百分比。

  一般來講,出勤率、成活率、合格率、正確率能達到100%,出米率、出油率達不到100%,完成率、增長了百分之幾等可以超過100%。一般出粉率在70、80%,出油率在30、40%。

  六、統(tǒng)計

  條形統(tǒng)計圖可以知道每個數(shù)量的多少。

  折現(xiàn)統(tǒng)計圖可以知數(shù)量的增減,

  扇形統(tǒng)計圖可以知道部分和總量的關系。

  初三圓知識點總結6

  1、在一個平面內(nèi),線段OA繞它固定的一個端點O旋轉一周,另一個端點A隨之旋轉所形成的封閉曲線叫做圓。固定的端點O叫做圓心,線段OA叫做半徑,以點O為圓心的圓,記作☉O,讀作“圓O”

  2、與圓有關的概念

  (1)弦和直徑(連結圓上任意兩點的線段BC叫做弦,經(jīng)過圓心的弦AB叫做直徑)

 。2)弧和半圓(圓上任意兩點間的部分叫做弧,圓的任意一條直徑的兩個端點分圓成兩條 弧,每一條弧都叫做半圓)

 。3)等圓(半徑相等的兩個圓叫做等圓)

  3、點和圓的位置關系:

  如果P是圓所在平面內(nèi)的一點,d 表示P到圓心的距離,r表示圓的半徑,則:

 。1)d<r →圓內(nèi)

 。2)d=r →圓上

 。3)d>r →圓外

  4、三角形的外接圓

  經(jīng)過三角形的三個頂點的圓叫做三角形的外接圓,外接圓的圓心叫做三角形的外心,三角形叫做圓的內(nèi)接三角形。三角形的外心到各頂點距離相等。

  一個三角形有且僅有一個外接圓,但一個圓有無數(shù)內(nèi)接三角形。

  5、垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。

  推論:

 。1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條;

 。2)平分弧的直徑,垂直平分弧所對的弦。

  6、圓心角定理:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對應的其余各組量都分別相等。

  7、圓周角定理: 一條弧所對的圓周角等于它所對的 圓心角的一半 。 推論:半圓(或直徑)所對的'圓周角是 直角,90°圓周角所對的弦是 直徑 。 同弧或等弧所對的圓周角相等;在同圓或等圓中,相等的圓周角所對的弧也相等。

  8、弧長及扇形的面積圓錐的側面積和全面積

  (1)弧長公式:lnr 180

  nr21lr(2)扇形的面積公式:3602

  (3)圓錐的側面積公式:rl

  (4)圓錐的表面積公式:rlr

  9、圓與圓的位置關系

 、賰蓤A外離 d﹥R+r

 、趦蓤A外切 d=R+r

  ③兩圓相交 R-r﹤d﹤R+r(R﹥r)

 、軆蓤A內(nèi)切 d=R-r(R﹥r)

  ⑤兩圓內(nèi)含 d﹤R-r(R﹥r)

  初三圓知識點總結7

  集合:

  圓:圓可以看作是到定點的距離等于定長的點的集合;

  圓的外部:可以看作是到定點的距離大于定長的點的集合;

  圓的內(nèi)部:可以看作是到定點的距離小于定長的點的集合

  軌跡:

  1、到定點的距離等于定長的點的軌跡是:以定點為圓心,定長為半徑的圓;

  2、到線段兩端點距離相等的'點的軌跡是:線段的中垂線;

  3、到角兩邊距離相等的點的軌跡是:角的平分線;

  4、到直線的距離相等的點的軌跡是:平行于這條直線且到這條直線的距離等于定長的兩條直線;

  5、到兩條平行線距離相等的點的軌跡是:平行于這兩條平行線且到兩條直線距離都相等的一條直線。

  圓周角定理推論:

  圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角都等于這條弧所對的圓心角的一半。

 、賵A周角度數(shù)定理:圓周角的度數(shù)等于它所對的弧的度數(shù)的一半。

 、谕瑘A或等圓中,圓周角等于它所對的弧上的圓心角的一半。

 、弁瑘A或等圓中,同弧或等弧所對的圓周角相等,相等圓周角所對的弧也相等。(不在同圓或等圓中其實也相等的。注:僅限這一條。)

 、馨雸A(或直徑)所對圓周角是直角,90°的圓周角所對的弦是直徑。

 、輬A的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角。

 、拊谕瑘A或等圓中,圓周角相等<=>弧相等<=>弦相等。

  圓周運動

  1、勻速圓周運動:質(zhì)點沿圓周運動,在相等的時間里通過的圓弧長度相同。

  2、描述勻速圓周運動快慢的物理量

  (1)線速度v:質(zhì)點通過的弧長和通過該弧長所用時間的比值,即v=s/t,單位m/s;屬于瞬時速度,既有大小,也有方向。方向為在圓周各點的切線方向上

  **勻速圓周運動是一種非勻速曲線運動,因而線速度的方向在時刻改變。

  (2)角速度 :ω=φ/t(φ指轉過的角度,轉一圈φ為 ),單位 rad/s或1/s;對某一確定的勻速圓周運動而言,角速度是恒定的

  (3)周期T,頻率f=1/T

  (4)線速度、角速度及周期之間的關系: 3、向心力:向心力就是做勻速圓周運動的物體受到一個指向圓心的合力,向心力只改變運動物體的速度方向,不改變速度大小。

  4、向心加速度:描述線速度變化快慢,方向與向心力的方向相同,

  5,注意的結論:

  (1)由于 方向時刻在變,所以勻速圓周運動是瞬時加速度的方向不斷改變的變加速運動。

  (2)做勻速圓周運動的物體,向心力方向總指向圓心,是一個變力。

  (3)做勻速圓周運動的物體受到的合外力就是向心力。

  6、離心運動:做勻速圓周運動的物體,在所受的合力突然消失或者不足以提供圓周運動所需的向心力的情況下,就做逐漸遠離圓心的運動。

  初三圓知識點總結8

  圓定義:

  (1)平面上到定點的距離等于定長的所有點組成的圖形叫做圓。

  (2)平面上一條線段,繞它的一端旋轉360°,留下的軌跡叫圓。

  圓心:

  (1)如定義(1)中,該定點為圓心

  (2)如定義(2)中,繞的那一端的端點為圓心。

  (3)圓任意兩條對稱軸的交點為圓心。

  (4)垂直于圓內(nèi)任意一條弦且兩個端點在圓上的線段的二分點為圓心。

  注:圓心一般用字母O表示

  直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。

  半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。

  圓的直徑和半徑都有無數(shù)條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=二分之d。

  圓的半徑或直徑?jīng)Q定圓的大小,圓心決定圓的位置。

  圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。

  圓的周長與直徑的'比值叫做圓周率。圓的周長除以直徑的商是一個固定的數(shù),把它叫做圓周率,它是一個無限不循環(huán)小數(shù)(無理數(shù)),用字母π表示。計算時,通常取它的近似值,π≈3.14。

  直徑所對的圓周角是直角。90°的圓周角所對的弦是直徑。

  圓的面積公式:圓所占平面的大小叫做圓的面積。πr^2,用字母S表示。

  一條弧所對的圓周角是圓心角的二分之一。

  在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。

  在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。

  在同圓或等圓中,如果兩條弦相等,那么他們所對的圓心角相等,所對的弧相等,所對的弦心距也相等。

  周長計算公式

  1.、已知直徑:C=πd

  2、已知半徑:C=2πr

  3、已知周長:D=cπ

  4、圓周長的一半:12周長(曲線)

  5、半圓的長:12周長+直徑

  面積計算公式:

  1、已知半徑:S=πr平方

  2、已知直徑:S=π(d2)平方

  3、已知周長:S=π(c2π)平方

  點、直線、圓和圓的位置關系

  1.點和圓的位置關系

  ①點在圓內(nèi)<=>點到圓心的距離小于半徑

 、邳c在圓上<=>點到圓心的距離等于半徑

 、埸c在圓外<=>點到圓心的距離大于半徑

  2.過三點的圓不在同一直線上的三個點確定一個圓。

  3.外接圓和外心經(jīng)過三角形的三個頂點可以做一個圓,這個圓叫做三角形的外接圓。外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心。

  4.直線和圓的位置關系

  相交:直線和圓有兩個公共點叫這條直線和圓相交,這條直線叫做圓的割線。

  相切:直線和圓有一個公共點叫這條直線和圓相切,這條直線叫做圓的切線,這個點叫做切點。

  相離:直線和圓沒有公共點叫這條直線和圓相離。

  5.直線和圓位置關系的性質(zhì)和判定

  如果⊙O的半徑為r,圓心O到直線l的距離為d,那么

  ①直線l和⊙O相交<=>d<>

 、谥本l和⊙O相切<=>d=r;

  ③直線l和⊙O相離<=>d>r。

  圓和圓定義:

  兩個圓沒有公共點且每個圓的點都在另一個圓的外部時,叫做這兩個圓的外離。

  兩個圓有唯一的公共點且除了這個公共點外,每個圓上的點都在另一個圓的外部,叫做兩個圓的外切。

  兩個圓有兩個交點,叫做兩個圓的相交。

  兩個圓有唯一的公共點且除了這個公共點外,每個圓上的點都在另一個圓的內(nèi)部,叫做兩個圓的內(nèi)切。

  兩個圓沒有公共點且每個圓的點都在另一個圓的內(nèi)部時,叫做這兩個圓的內(nèi)含。

  原理:圓心距和半徑的數(shù)量關系:

  兩圓外離<=>d>R+r兩圓外切<=>d=R+r兩圓相交<=>R-r<>=r)

  兩圓內(nèi)切<=>d=R-r(R>r)兩圓內(nèi)含<=>dr)

  正多邊形和圓

  1、正多邊形的概念:各邊相等,各角也相等的多邊形叫做正多邊形。

  2、正多邊形與圓的關系:

  (1)將一個圓n(n≥3)等分(可以借助量角器),依次連結各等分點所得的多邊形是這個圓的內(nèi)接正多邊形。

  (2)這個圓是這個正多邊形的外接圓。

  3、正多邊形的有關概念:

  (1)正多邊形的中心——正多邊形的外接圓的圓心。

  (2)正多邊形的半徑——正多邊形的外接圓的半徑。

  (3)正多邊形的邊心距——正多邊形中心到正多邊形各邊的距離。

  (4)正多邊形的中心角——正多邊形每一邊所對的外接圓的圓心角。

  4、正多邊形性質(zhì):

  (1)任何正多邊形都有一個外接圓。

  (2)正多邊形都是軸對稱圖形,當邊數(shù)是偶數(shù)時,它又是中心對稱圖形,正n邊形的對稱軸有n條。(3)邊數(shù)相同的正多邊形相似。

  初三圓知識點總結9

  1.點與圓的位置關系及其數(shù)量特征:如果圓的半徑為r,點到圓心的距離為d,則

 、冱c在圓上<===>d=r;

 、邳c在圓內(nèi)<===>dd>r.

  二.圓的對稱性:

  1.與圓相關的概念:

 、芡膱A:圓心相同,半徑不等的兩個圓叫做同心圓。

 、莸葓A:能夠完全重合的兩個圓叫做等圓,半徑相等的兩個圓是等圓。

  ⑥等。涸谕瑘A或等圓中,能夠互相重合的弧叫做等弧。

 、邎A心角:頂點在圓心的角叫做圓心角.

 、嘞倚木:從圓心到弦的距離叫做弦心距.

  2.圓是軸對稱圖形,直徑所在的直線是它的對稱軸,圓有無數(shù)條對稱軸。

  3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。

  推論:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。

  說明:根據(jù)垂徑定理與推論可知對于一個圓和一條直線來說,如果具備:

 、龠^圓心;

 、诖怪庇谙;

  ③平分弦;

 、芷椒窒宜鶎Φ膬(yōu)弧;

  ⑤平分弦所對的劣弧。

  上述五個條件中的任何兩個條件都可推出其他三個結論。

  4.定理:在同圓或等圓中,相等的圓心角所對弧相等、所對的弦相等、所對的弦心距相等。

  推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對應的其余各組量都分別相等.

  三.圓周角和圓心角的關系:

  1.圓周角的定義:頂點在圓上,并且兩邊都與圓相交的角,叫做圓周角.

  2.圓周角定理;一條弧所對的圓周角等于它所對的圓心角的一半.

  推論1:同弧或等弧所對圓周角相等;反之,在同圓或等圓中,相等圓周角所對弧也相等;

  推論2:半圓或直徑所對的圓周角是直角;90°的圓周角所對的弦是直徑;

  四.確定圓的條件:

  1.理解確定一個圓必須的具備兩個條件:

  經(jīng)過一點可以作無數(shù)個圓,經(jīng)過兩點也可以作無數(shù)個圓,其圓心在這個兩點線段的垂直平分線上.

  2.定理:不在同一直線上的三個點確定一個圓.

  3.三角形的外接圓、三角形的`外心、圓的內(nèi)接三角形的概念:

  (1)三角形的外接圓和圓的內(nèi)接三角形:經(jīng)過一個三角形三個頂點的圓叫做這個三角形的外接圓,這個三角形叫做圓的內(nèi)接三角形.

  (2)三角形的外心:三角形外接圓的圓心叫做這個三角形的外心.

  (3)三角形的外心的性質(zhì):三角形外心到三頂點的距離相等.

  初中數(shù)學實數(shù)的概念及分類

  1、實數(shù)的分類 正有理數(shù) 有理數(shù)零有限小數(shù)和無限循環(huán)小數(shù)

  負有理數(shù)

  正無理數(shù)

  無理數(shù)無限不循環(huán)小數(shù)

  負無理數(shù)

  整數(shù)包括正整數(shù)、零、負整數(shù)。

  正整數(shù)又叫自然數(shù)。

  正整數(shù)、零、負整數(shù)、正分數(shù)、負分數(shù)統(tǒng)稱為有理數(shù)。

  2、無理數(shù)

  在理解無理數(shù)時,要抓住“無限不循環(huán)”這一時之,歸納起來有四類:

  (1)開方開不盡的數(shù),如7,2等;

  π(2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如+8等; 3

  (3)有特定結構的數(shù),如0.1010010001…等;

  數(shù)學有理數(shù)基礎知識點

  1.有理數(shù)的加法運算

  同號兩數(shù)來相加,絕對值加不變號。

  異號相加大減小,大數(shù)決定和符號。

  互為相反數(shù)求和,結果是零須記好。

  “大”減“小”是指絕對值的大小。

  2.有理數(shù)的減法運算

  減正等于加負,減負等于加正。

  有理數(shù)的乘法運算符號法則。

  同號得正異號負,一項為零積是零。

  3.有理數(shù)混合運算的四種運算技巧

  轉化法:一是將除法轉化為乘法,二是將乘方轉化為乘法,三是在乘除混合運算中,通常將小數(shù)轉化為分數(shù)進行約分計算。

  湊整法:在加減混合運算中,通常將和為零的兩個數(shù),分母相同的兩個數(shù),和為整數(shù)的兩個數(shù),乘積為整數(shù)的兩個數(shù)分別結合為一組求解。

  分拆法:先將帶分數(shù)分拆成一個整數(shù)與一個真分數(shù)的和的形式,然后進行計算。

  巧用運算律:在計算中巧妙運用加法運算律或乘法運算律往往使計算更簡便。

  初三圓知識點總結10

  1、圓心:圓中心一點叫做圓心。用字母“O”來表示。半徑:連接圓心和圓上任意一點的線段叫做半徑,用字母“r”來表示。直徑:通過圓心并且兩端都在圓上的線段叫做直徑,用字母“d”表示。

  2、圓心確定圓的位置,半徑確定圓的大小。

  3、在同一個圓內(nèi),所有的半徑都相等,所有的直徑都相等。

  在同一個圓內(nèi),有無數(shù)條半徑,有無數(shù)條直徑。

  在同一個圓內(nèi),直徑的長度是半徑的2倍,半徑的長度是直徑的一半。用字母表示為:d=2r r=2(1)d

  4、圓的周長:圍成圓的曲線的長度叫做圓的周長。

  5、圓的周長總是直徑的3倍多一些,這個比值是一個固定的數(shù)。我們把圓的周長和直徑的比值叫做圓周率,用字母π表示。圓周率是一個無限不循環(huán)小數(shù)。在計算時,取π≈3.14。世界上第一個把圓周率算出來的人是我國的數(shù)學家祖沖之。

  6、圓的周長公式:C=πd或C=2πr

  7、圓的面積:圓所占平面的大小叫圓的面積。

  8、把一個圓割成一個近似的長方形,割拼成的長方形的長相當于圓周長的一半,寬相當于圓的半徑,因為長方形面積=長×寬,所以圓的面積=πr×r=πr2

  9、圓的面積公式:S=πr2或者S=π(d÷2)2或者S=π(C÷π÷2)2

  10、在一個正方形里畫一個最大的圓,圓的直徑等于正方形的邊長。圓的面積和正方形面積的.比是π:4。在一個圓里畫一個最大正方形的,圓的直徑的長度等于正方形的對角線的長度,正方形的面積=對角線×對角線÷2=直徑×直徑÷2。

  11、在一個長方形里畫一個最大的圓,圓的直徑等于長方形的短邊。

  12、一個環(huán)形,外圓的半徑是R,內(nèi)圓的半徑是r,它的面積是S=πR2-πr2或S=π(R2-r2)。(其中R=r+環(huán)的寬度.)

  13、環(huán)形的周長=外圓周長+內(nèi)圓周長

  14、半圓的周長等于圓的周長的一半加直徑。半圓周長公式:C=πd÷2+d或C=πr+2r

  15、半圓面積=圓面積÷2公式為:S=πr2÷2

  16、在同一個圓里,半徑擴大或縮小多少倍,直徑和周長也擴大或縮小相同的倍數(shù)。而面積擴大或縮小以上倍數(shù)的平方倍。例如:在同一個圓里,半徑擴大4倍,那么直徑和周長就都擴大4倍,而面積擴大16倍。

  17、兩個圓的半徑比等于直徑比等于周長比,而面積比等于以上比的平方。

  例如:兩個圓的半徑比是2:3,那么這兩個圓的直徑比和周長比都是2:3,而面積比是4:9。

  18、當一個圓的半徑增加a厘米時,它的周長就增加2πa厘米;當一個圓的直徑增加a厘米時,它的周長就增加πa厘米。

  19、在同一圓中,圓心角占圓周角的幾分之幾,它所在扇形面積就占圓面積的幾分之幾;所對的弧就占圓周長的幾分之幾.

  20、當長方形,正方形,圓的周長相等時,圓的面積最大,長方形的面積最小;當長方形,正方形,圓的面積相等時,長方形的周長最大,圓的周長最小。

  22、軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形就是軸對稱圖形。折痕所在的這條直線叫做對稱軸。

  23、有1一條對稱軸的圖形有:角、等腰三角形、等腰梯形、扇形、半圓。有2條對稱軸的圖形是:長方形有3條對稱軸的圖形是:等邊三角形有4條對稱軸的圖形是:正方形有無數(shù)條對稱軸的圖形是:圓、圓環(huán)。

  24、直徑所在的直線是圓的對稱軸。

  今天的內(nèi)容就介紹到這里了。

  初三圓知識點總結11

  圓的方程

  1、圓的定義:平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。

  2、圓的方程

 。1)標準方程,圓心,半徑為r;

  (2)一般方程

  當時,方程表示圓,此時圓心為,半徑為

  當時,表示一個點;當時,方程不表示任何圖形。

 。3)求圓方程的方法:

  一般都采用待定系數(shù)法:先設后求。確定一個圓需要三個獨立條件,若利用圓的'標準方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);

  另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置。

  3、直線與圓的位置關系:

  直線與圓的位置關系有相離,相切,相交三種情況:

 。1)設直線,圓,圓心到l的距離為,則有;;

  (2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程

  (3)過圓上一點的切線方程:圓(x—a)2+(y—b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0—a)(x—a)+(y0—b)(y—b)=r2

  4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

  設圓,

  兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

  當時兩圓外離,此時有公切線四條;

  當時兩圓外切,連心線過切點,有外公切線兩條,內(nèi)公切線一條;

  當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

  當時,兩圓內(nèi)切,連心線經(jīng)過切點,只有一條公切線;

  當時,兩圓內(nèi)含;當時,為同心圓。

  注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線

  圓的輔助線一般為連圓心與切線或者連圓心與弦中點

  數(shù)學如何預習

  上課前對即將要上的數(shù)學內(nèi)容進行閱讀,做到心中有數(shù),以便于掌握聽課的主動權。這樣有利于提高學習能力和養(yǎng)成自學的習慣,所以它是數(shù)學學習中的重要一環(huán)。

 。1)看書要動筆。(不動筆墨不讀書)

 、僖话悴捎眠呴喿x、邊思考、邊書寫的方式,把內(nèi)容的要點、層次、聯(lián)系劃出來或打上記號,寫下自己的看法或在弄不懂的地方與問題上做記號;

 、陬A習時一旦發(fā)現(xiàn)舊知識掌握得不好,甚至不理解時,就要及時翻書查閱摘抄,采取措施補上,為順利學習新內(nèi)容創(chuàng)造條件。

 、哿私獗竟(jié)課的基本內(nèi)容,也就是知道要講些什么,要解決什么問題,采取什么方法,重點關鍵在哪里等等。

 、芤涯骋槐揪毩晝运鶎恼鹿(jié)拿出來大致看一遍,看哪些題一下能看會,哪些題根本看不懂,然后帶著疑問去聽課。

  成數(shù)概念

  一數(shù)為另一數(shù)的幾成,泛指比率:應在生產(chǎn)組內(nèi)找標準勞動力,互相比較,評成數(shù)。

  表示一個數(shù)是另一個數(shù)的十分之幾的數(shù),叫做成數(shù)。

  通常用在工農(nóng)業(yè)生產(chǎn)中表示生產(chǎn)的增長狀況。幾成就是十分之幾。

  例如,糧食產(chǎn)量增產(chǎn)“二成”。

  “二成”即是十分之二,也就是糧食產(chǎn)量增加了20%。

  在計算成數(shù)時,設有甲、乙兩數(shù),求乙數(shù)對于甲數(shù)的比,并把比值化成純小數(shù),那么所得的純小數(shù)叫做乙數(shù)對于甲數(shù)的成數(shù)。其中小數(shù)第一位叫做“成”或“分”,第二位叫做“厘”。

  例如,計劃糧食產(chǎn)量為5萬斤,實際多產(chǎn)了1萬斤,那么糧食增產(chǎn)的成數(shù)是1÷5=0.2,即糧食增產(chǎn)了二成。

  成數(shù)與其他數(shù)的互化

  方法:分數(shù)X10=成數(shù)成數(shù)/10=小數(shù)(成數(shù)除以10等于小數(shù))成數(shù)X10=百分數(shù)

【初三圓知識點總結】相關文章:

初一圓的知識點總結04-10

圓和圓的位置關系 教案12-28

圓和圓的位置關系教案03-21

圓和圓的位置關系教案05-22

物理知識點總結06-05

兒科知識點總結05-24

動量知識點總結05-31

英語知識點總結12-02

馬說知識點總結05-29

師說知識點歸納總結10-25