亚洲色影视在线播放_国产一区+欧美+综合_久久精品少妇视频_制服丝袜国产网站

學(xué)習(xí)技巧

數(shù)學(xué)規(guī)律題解題技巧

時(shí)間:2022-10-08 18:12:25 學(xué)習(xí)技巧 我要投稿
  • 相關(guān)推薦

數(shù)學(xué)規(guī)律題解題技巧

  初中數(shù)學(xué)規(guī)律題解題技巧,各位初中的同學(xué)知道怎么做規(guī)律題嗎?其實(shí)是有技巧的哦,看看下面吧!

數(shù)學(xué)規(guī)律題解題技巧

  一、基本方法——看增幅

  (一)如增幅相等(此實(shí)為等差數(shù)列):對(duì)每個(gè)數(shù)和它的前一個(gè)數(shù)進(jìn)行比較,如增幅相等,則第n個(gè)數(shù)可以表示為:a+(n-1)b,其中a為數(shù)列的第一位數(shù),b為增幅,(n-1)b為第一位數(shù)到第n位的總增幅。

  然后再簡(jiǎn)化代數(shù)式a+(n-1)b。

  例:4、10、16、22、28……,求第n位數(shù)。

  分析:第二位數(shù)起,每位數(shù)都比前一位數(shù)增加6,增幅相都是6,所以,第n位數(shù)是:4+(n-1)×6=6n-2

  (二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅為等差數(shù)列)。

  如增幅分別為3、5、7、9,說明增幅以同等幅度增加。

  此種數(shù)列第n位的數(shù)也有一種通用求法。

  基本思路是:1、求出數(shù)列的第n-1位到第n位的增幅;

  2、求出第1位到第第n位的總增幅;

  3、數(shù)列的第1位數(shù)加上總增幅即是第n位數(shù)。

  舉例說明:2、5、10、17……,求第n位數(shù)。

  分析:數(shù)列的增幅分別為:3、5、7,增幅以同等幅度增加。

  那么,數(shù)列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,總增幅為:

  [3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1

  所以,第n位數(shù)是:2+ n2-1= n2+1

  此解法雖然較煩,但是此類題的通用解法,當(dāng)然此題也可用其它技巧,或用分析觀察湊的方法求出,方法就簡(jiǎn)單的多了。

  (三)增幅不相等,但是,增幅同比增加,即增幅為等比數(shù)列,如:2、3、5、9,17增幅為1、2、4、8.

  (三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

  此類題大概沒有通用解法,只用分析觀察的方法,但是,此類題包括第二類的題,如用分析觀察法,也有一些技巧。

  二、基本技巧

  (一)標(biāo)出序列號(hào):找規(guī)律的題目,通常按照一定的順序給出一系列量,要求我們根據(jù)這些已知的量找出一般規(guī)律。

  找出的規(guī)律,通常包序列號(hào)。

  所以,把變量和序列號(hào)放在一起加以比較,就比較容易發(fā)現(xiàn)其中的奧秘。

  例如,觀察下列各式數(shù):0,3,8,15,24,……。

  試按此規(guī)律寫出的第100個(gè)數(shù)是 。

  解答這一題,可以先找一般規(guī)律,然后使用這個(gè)規(guī)律,計(jì)算出第100個(gè)數(shù)。

  我們把有關(guān)的量放在一起加以比較:

  給出的數(shù):0,3,8,15,24,……。

  序列號(hào): 1,2,3, 4, 5,……。

  容易發(fā)現(xiàn),已知數(shù)的每一項(xiàng),都等于它的序列號(hào)的平方減1。

  因此,第n項(xiàng)是n2-1,第100項(xiàng)是1002-1。

  (二)公因式法:每位數(shù)分成最小公因式相乘,然后再找規(guī)律,看是不是與n2、n3,或2n、3n,或2n、3n有關(guān)。

  例如:1,9,25,49,(),(),的第n為(2n-1)2

  (三)看例題:

  A: 2、9、28、65…..增幅是7、19、37….,增幅的增幅是12、18 答案與3有關(guān)且…………即:n3+1

  B:2、4、8、16…….增幅是2、4、8.. …..答案與2的乘方有關(guān) 即:2n

  (四)有的可對(duì)每位數(shù)同時(shí)減去第一位數(shù),成為第二位開始的新數(shù)列,然后用(一)、(二)、(三)技巧找出每位數(shù)與位置的關(guān)系。

  再在找出的規(guī)律上加上第一位數(shù),恢復(fù)到原來。

  例:2、5、10、17、26……,同時(shí)減去2后得到新數(shù)列:

  0、3、8、15、24……,

  序列號(hào):1、2、3、4、5

  分析觀察可得,新數(shù)列的第n項(xiàng)為:n2-1,所以題中數(shù)列的第n項(xiàng)為:

  (n2-1)+2=n2+1

  (五)有的可對(duì)每位數(shù)同時(shí)加上,或乘以,或除以第一位數(shù),成為新數(shù)列,然后,在再找出規(guī)律,并恢復(fù)到原來。

  例 : 4,16,36,64,?,144,196,… ?(第一百個(gè)數(shù))

  同除以4后可得新數(shù)列:1、4、9、16…,很顯然是位置數(shù)的平方。

  (六)同技巧(四)、(五)一樣,有的可對(duì)每位數(shù)同加、或減、或乘、或除同一數(shù)(一般為1、2、3)。

  當(dāng)然,同時(shí)加、或減的可能性大一些,同時(shí)乘、或除的不太常見。

  (七)觀察一下,能否把一個(gè)數(shù)列的奇數(shù)位置與偶數(shù)位置分開成為兩個(gè)數(shù)列,再分別找規(guī)律。

  三、基本步驟

  1、先看增幅是否相等,如相等,用基本方法(一)解題。

  2、如不相等,綜合運(yùn)用技巧(一)、(二)、(三)找規(guī)律

  3、 如不行,就運(yùn)用技巧(四)、(五)、(六),變換成新數(shù)列,然后運(yùn)用技巧(一)、(二)、(三)找出新數(shù)列的規(guī)律

  4、 最后,如增幅以同等幅度增加,則用用基本方法(二)解題

  四、練習(xí)題

  例1:一道初中數(shù)學(xué)找規(guī)律題

  0,3,8,15,24,······

  2,5,10,17,26,·····

  0,6,16,30,48······

  (1)第一組有什么規(guī)律?

  (2)第二、三組分別跟第一組有什么關(guān)系?

  (3)取每組的第7個(gè)數(shù),求這三個(gè)數(shù)的和?

  2、觀察下面兩行數(shù)

  2,4,8,16,32,64, ...(1)

  5,7,11,19,35,67...(2)

  根據(jù)你發(fā)現(xiàn)的規(guī)律,取每行第十個(gè)數(shù),求得他們的和。

  (要求寫出最后的計(jì)算結(jié)果和詳細(xì)解題過程。

  )

  3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑 排列的珠子,前2002個(gè)中有幾個(gè)是黑的?4、 3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……用含有N的代數(shù)式表示規(guī)律

  寫出兩個(gè)連續(xù)技術(shù)的平方差為888的等式

  五、對(duì)于數(shù)表

  1、先看行的規(guī)律,然后,以列為單位用數(shù)列找規(guī)律方法找規(guī)律

  2、看看有沒有一個(gè)數(shù)是上面兩數(shù)或下面兩數(shù)的和或差

  初中數(shù)學(xué)做題技巧及方法

  01熟悉習(xí)題中所涉及的內(nèi)容

  解題、做練習(xí)只是學(xué)習(xí)過程中的一個(gè)環(huán)節(jié),而不是學(xué)習(xí)的全部,你不能為解題而解題。

  解題是為閱讀服務(wù)的,是檢查你是否讀懂了教科書,是否深刻理解了其中的概念、定理、公式和規(guī)則,能否利用這些概念、定理、公式和規(guī)則解決實(shí)際問題。

  解題時(shí),我們的概念越清晰,對(duì)公式、定理和規(guī)則越熟悉,解題速度就越快。

  因此,我們?cè)诮忸}之前,應(yīng)通過閱讀教科書和做簡(jiǎn)單的練習(xí),先熟悉、記憶和辨別這些基本內(nèi)容,正確理解其涵義的本質(zhì),接著馬上就做后面所配的練習(xí),一刻也不要停留。

  02熟悉習(xí)題中所涉及到的知識(shí)

  有時(shí)候,我們遇到一道不會(huì)做的習(xí)題,不是我們沒有學(xué)會(huì)現(xiàn)在所要學(xué)會(huì)的內(nèi)容,而是要用到過去已經(jīng)學(xué)過的一個(gè)公式,而我們卻記得不很清楚了;或是需用到一個(gè)特殊的定理,而我們卻從未學(xué)過,這樣就使解題速度大為降低。

  這時(shí),我們應(yīng)先補(bǔ)充一些必須補(bǔ)充的相關(guān)知識(shí),弄清楚與題目相關(guān)的概念、公式或定理,然后再去解題,否則就是浪費(fèi)時(shí)間,當(dāng)然,解題速度就更無從談起了。

  03熟悉基本的解題步驟和解題方法

  解題的過程,是一個(gè)思維的過程。

  對(duì)一些基本的、常見的問題,前人已經(jīng)總結(jié)出了一些基本的解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習(xí)題的答案。

  否則,走了彎路就多花了時(shí)間。

  04認(rèn)真做好歸納總結(jié)

  在解過一定數(shù)量的習(xí)題之后,對(duì)所涉及到的知識(shí)、解題方法進(jìn)行歸納總結(jié),以便使解題思路更為清晰,就能達(dá)到舉一反三的效果,對(duì)于類似的習(xí)題一目了然,可以節(jié)約大量的解題時(shí)間。

  05先易后難,逐步增加習(xí)題的難度

  人們認(rèn)識(shí)事物的過程都是從簡(jiǎn)單到復(fù)雜。

  簡(jiǎn)單的問題解多了,從而使概念清晰了,對(duì)公式、定理以及解題步驟熟悉了,解題時(shí)就會(huì)形成跳躍性思維,解題的速度就會(huì)大大提高。

  養(yǎng)成了習(xí)慣,遇到一般的難題,同樣可以保持較高的解題速度。

  有些學(xué)生不太重視這些基本的、簡(jiǎn)單的習(xí)題,認(rèn)為沒有必要花費(fèi)時(shí)間去解這些簡(jiǎn)單的習(xí)題,結(jié)果是概念不清,公式、定理及解題步驟不熟,遇到稍難一些的題,就束手無策,解題速度就更不用說了。

  其實(shí),解簡(jiǎn)單容易的習(xí)題,并不一定比解一道復(fù)雜難題的勞動(dòng)強(qiáng)度和效率低。

  比如,與一個(gè)人扛一大袋大米上五層樓相比,一個(gè)人拎一個(gè)小提包也上到五層樓當(dāng)然要輕松得多。

  但是,如果扛米的人只上一次,而拎包的人要來回上下50次、甚至100次,那么,拎包人比扛米人的勞動(dòng)強(qiáng)度大。

  所以在相同時(shí)間內(nèi),解50道、100道簡(jiǎn)單題,可能要比解一道難題的勞動(dòng)強(qiáng)度大。

  由此可見,去解一道難以解出的難題,不如去解30道稍微簡(jiǎn)單一些的習(xí)題,其收獲也許會(huì)更大。

  因此,我們?cè)趯W(xué)習(xí)時(shí),應(yīng)根據(jù)自己的能力,先去解那些看似簡(jiǎn)單,卻很重要的習(xí)題,以不斷提高解題速度和解題能力。

  隨著速度和能力的提高,再逐漸增加難度,就會(huì)達(dá)到事半功倍的效果。

  06認(rèn)真、仔細(xì)地審題

  對(duì)于一道具體的習(xí)題,解題時(shí)最重要的環(huán)節(jié)是審題。

  審題的第一步是讀題,這是獲取信息量和思考的過程。

  讀題要慢,一邊讀,一邊想,應(yīng)特別注意每一句話的內(nèi)在涵義,并從中找出隱含條件。

  讀題一旦結(jié)束,哪些是已知條件?求解的結(jié)論是什么?還缺少哪些條件,可否從已知條件中推出?在你的腦海里,這些信息就應(yīng)該已經(jīng)結(jié)成了一張網(wǎng),并有了初步的思路和解題方案,然后就是根據(jù)自己的思路,演算一遍,加以驗(yàn)證。

  有些學(xué)生沒有養(yǎng)成讀題、思考的習(xí)慣,心里著急,匆匆一看,就開始解題,結(jié)果常常是漏掉了一些信息,花了很長時(shí)間解不出來,還找不到原因,想快卻慢了。

  很多時(shí)候?qū)W生問問題的時(shí)候,老師和他一起讀題,讀到一半時(shí),他說:“老師,我會(huì)了。”所以,在實(shí)際解題時(shí),應(yīng)特別注意,審題要認(rèn)真、仔細(xì)。

  07學(xué)會(huì)畫圖

  畫圖是一個(gè)翻譯的過程。

  讀題時(shí),若能根據(jù)題義,把對(duì)數(shù)學(xué)(或其他學(xué)科)語言的理解,畫成分析圖,就使題目變得形象、直觀。

  這樣就把解題時(shí)的抽象思維,變成了形象思維,從而降低了解題難度。

  有些題目,只要分析圖一畫出來,其中的關(guān)系就變得一目了然。

  尤其是對(duì)于幾何題,包括解析幾何題,若不會(huì)畫圖,有時(shí)簡(jiǎn)直是無從下手

  因此,牢記各種題型的基本作圖方法,牢記各種函數(shù)的圖像和意義及演變過程和條件,對(duì)于提高解題速度非常重要。

  畫圖時(shí)應(yīng)注意盡量畫得準(zhǔn)確。

  畫圖準(zhǔn)確,有時(shí)能使你一眼就看出答案,再進(jìn)一步去演算證實(shí)就可以了;反之,作圖不準(zhǔn)確,有時(shí)會(huì)將你引入歧途。

  總之,學(xué)習(xí)是一個(gè)不斷深化的認(rèn)識(shí)過程,解題只是學(xué)習(xí)的一個(gè)重要環(huán)節(jié)。

  你對(duì)學(xué)習(xí)的內(nèi)容越熟悉,對(duì)基本解題思路和方法越熟悉,背熟的數(shù)字、公式越多,并能把局部與整體有機(jī)地結(jié)合為一體,形成了跳躍性思維,就可以大大加快解題速度。

【數(shù)學(xué)規(guī)律題解題技巧】相關(guān)文章:

高中數(shù)學(xué)選擇題的解題技巧10-08

中考數(shù)學(xué)填空題四大解題技巧10-01

中考數(shù)學(xué)填空題四大解題技巧10-01

中考地理讀圖題的解題技巧10-09

初中數(shù)學(xué)解題技巧10-08

論述題有哪些規(guī)律10-26

初中化學(xué)實(shí)驗(yàn)題的解題技巧10-26

關(guān)于初中數(shù)學(xué)解題技巧10-01

初中數(shù)學(xué)解題技巧方法10-05