亚洲色影视在线播放_国产一区+欧美+综合_久久精品少妇视频_制服丝袜国产网站

教案

二元一次方程教案

時間:2024-07-27 08:41:24 教案 我要投稿

二元一次方程教案

  作為一名優(yōu)秀的教育工作者,編寫教案是必不可少的,教案是實施教學的主要依據(jù),有著至關重要的作用。那么什么樣的教案才是好的呢?下面是小編精心整理的二元一次方程教案,希望對大家有所幫助。

二元一次方程教案

二元一次方程教案1

  教學目標

  1.會列二元一次方程組解簡單的應用題并能檢驗結果的合理性。

  2.提高分析問題、解決問題的能力。

  3.體會數(shù)學的應用價值。

  教學重點

  根據(jù)實際問題列二元一次方程組。

  教學難點

  1.找實際問題中的相等關系。

  2.徹底理解題意。

  教學過程

  一、引入。

  本節(jié)課我們繼續(xù)學習用二元一次方程組解決簡單實際問題。

  二、新課。

  例1. 小琴去縣城,要經(jīng)過外祖母家,頭一天下午從她家走到個祖母家里,第二天上午,從外外祖母家出發(fā)勻速前進,走了2小時、5小時后,離她自己家分別為13千米、25千米。你能算出她的速度嗎?還能算出她家與外祖母家相距多遠嗎?

  探究: 1. 你能畫線段表示本題的`數(shù)量關系嗎?

  2.填空:(用含S、V的代數(shù)式表示)

  設小琴速度是V千米/時,她家與外祖母家相距S千米,第二天她走2小時趟的路程是______千米。此時她離家距離是______千米;她走5小時走的路程是______千米,此時她離家的距離是________千米20xx年-20xx學年七年級數(shù)學下冊全冊教案(人教版)教案。

  3.列方程組。

  4.解方程組。

  5.檢驗寫出答案。

  討論:本題是否還有其它解法?

  三、練習。

  1.建立方程模型。

 。1)兩在相距280千米,一般順流航行需14小時,逆流航行需20小時,求船在靜水中速度,水流的速度

 。2)420個零件由甲、乙兩人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,還需3天完成。問:甲、乙每天各做多少個零件?

  2.P38練習第2題。

  3.小組合作編應用題:兩個寫一方程組,另兩人根據(jù)方程組編應用題。

  四、小結。

  本節(jié)課你有何收獲?

二元一次方程教案2

  教學目標:

  1、使學生會借助二元一次方程組解決簡單的實際問題,讓學生再次體會二元一次方程組與現(xiàn)實生活的聯(lián)系和作用2、通過應用題教學使學生進一步使用代數(shù)中的方程去反映現(xiàn)實世界中等量關系,體會代數(shù)方法的`優(yōu)越性。

  重點:能根據(jù)題意列二元一次方程組;根據(jù)題意找出等量關系;

  難點:正確發(fā)找出問題中的兩個等量關系

  教學過程:

  一、復習

  列方程解應用題的步驟是什么?

  審題、設未知數(shù)、列方程、解方程、檢驗并答

  新課:

  看一看課本99頁探究1

  問題:

  1題中有哪些已知量?哪些未知量?

  2題中等量關系有哪些?

  3如何解這個應用題?

  本題的等量關系是(1)30只母牛和15只小牛一天需用飼料為675kg

 。2)(30+12只母牛和(15+5)只小牛一天需用飼料為940

  練一練:

  1、某所中學現(xiàn)在有學生4200人,計劃一年后初中在樣生增加8%,高中在校生增加11%,這樣全校學生將增加10%,這所學,F(xiàn)在的初中在校生和高中在校生人數(shù)各是多少人?

  2、有大小兩輛貨車,兩輛大車與3輛小車一次可以支貨15。50噸,5輛大車與6輛小車一次可以支貨35噸,求3輛大車與5輛小車一次可以運貨多少噸?

  3、某工廠第一車間比第二車間人數(shù)的少30人,如果從第二車間調(diào)出10人到第一車間,則第一車間的人數(shù)是第二車間的,問這兩車間原有多少人?

  4、某運輸隊送一批貨物,計劃20天完成,實際每天多運送5噸,結果不但提前2天完成任務并多運了10噸,求這批貨物有多少噸?原計劃每天運輸多少噸?

二元一次方程教案3

  教學目標

  1.使學生會用代入消元法解二元一次方程組;

  2.理解代入消元法的基本思想體現(xiàn)的“化未知為已知”,“變陌生為熟悉”的化歸思想方法;

  3.在本節(jié)課的教學過程中,逐步滲透樸素的辯證唯物主義思想。

  教學重點和難點

  重點:用代入法解二元一次方程組。

  難點:代入消元法的基本思想。

  課堂教學過程設計

  一、從學生原有的認知結構提出問題

  1.誰能造一個二元一次方程組?為什么你造的方程組是二元一次方程組?

  2.誰能知道上述方程組(指學生提出的方程組)的解是什么?什么叫二元一次方程組的解?

  3.上節(jié)課我們提出了雞兔同籠問題:(投影)一個農(nóng)民有若干只雞和兔子,它們共有50個頭和140只腳,問雞和兔子各有多少?設農(nóng)民有x只雞,y只兔,則得到二元一次方程組

  對于列出的這個二元一次方程組,我們?nèi)绾吻蟪鏊慕饽?(學生思考)教師引導并提出問題:若設有x只雞,則兔子就有(50-x)只,依題意,得2x+4(50-x)= 140從而可解得,x=30,50-x=20,使問題得解。

  問題:從上面一元一次方程解法過程中,你能得出二元一次方程組串問題,進一步引導學生找出它的解法)

  (1)在一元一次方程解法中,列方程時所用的等量關系是什么?

  (2)該等量關系中,雞數(shù)與兔子數(shù)的表達式分別含有幾個未知數(shù)?

 。3)前述方程組中方程②所表示的等量關系與用一元一次方程表示的等量關系是否相同?

  (4)能否由方程組中的方程②求解該問題呢?

  (5)怎樣使方程②中含有的兩個未知數(shù)變?yōu)橹缓幸粋未知數(shù)呢?(以上問題,要求學生獨立思考,想出消元的方法)結合學生的回答,教師作出講解。

  由方程①可得y=50-x③,即兔子數(shù)y用雞數(shù)x的代數(shù)式50-x表示,由于方程②中的`y與方程①中的y都表示兔子的只數(shù),故可以把方程②中的y用(50-x)來代換,即把方程③代入方程②中,得2x+4(50-x)=140,解得x=30。

  將x=30代入方程③,得y=20。

  即雞有30只,兔有20只。

  本節(jié)課,我們來學習二元一次方程組的解法。

  二、講授新課例1解方程組

  分析:若此方程組有解,則這兩個方程中同一個未知數(shù)就應取相同的值。因此,方程②中的y就可用方程①中的表示y的代數(shù)式來代替。解:把①代入②,得3x+2(1-x)=5,3x+2-2x=5,所以x=3。把x=3代入①,得y=-2。

 。ū绢}應以教師講解為主,并板書,同時教師在最后應提醒學生,與解一元一次方程一樣,要判斷運算的結果是否正確,需檢驗。其方法是將所求得的一對未知數(shù)的值分別代入原方程組里的每一個方程中,看看方程的左、右兩邊是否相等。檢驗可以口算,也可以在草稿紙上驗算)教師講解完例1后,結合板書,就本題解法及步驟提出以下問題:

  1.方程①代入哪一個方程?其目的是什么?

  2.為什么能代入?

  3.只求出一個未知數(shù)的值,方程組解完了嗎?

  4.把已求出的未知數(shù)的值,代入哪個方程來求另一個未知數(shù)的值較簡便?在學生回答完上述問題的基礎上,教師指出:這種通過代入消去一個未知數(shù),使二元方程轉(zhuǎn)化為一元方程,從而方程組得以求解的方法叫做代入消元法,簡稱代入法。例2解方程組

  分析:例1是用y=1-x直接代入②的。例2的兩個方程都不具備這樣的條件(即用含有一個未知數(shù)的代數(shù)式表示另一個未知數(shù)),所以不能直接代入。為此,我們需要想辦法創(chuàng)造條件,把一個方程變形為用含x的代數(shù)式表示y(或含y的代數(shù)式表示x)。那么選用哪個方程變形較簡便呢?通過觀察,發(fā)現(xiàn)方程②中x的系數(shù)為1,因此,可先將方程②變形,用含有y的代數(shù)式表示x,再代入方程①求解。解:由②,得x=8-3y,③把③代入①,得(問:能否代入②中?)

  2(8-3y)+5y=-21,-y=-37,所以y=37。

 。▎枺罕绢}解完了嗎?把y=37代入哪個方程求x較簡單?)把y=37代入③,得x= 8-3×37,所以x=-103。

 。ū绢}可由一名學生口述,教師板書完成)

  三、師生共同小結

  在與學生共同回顧了本節(jié)課所學內(nèi)容的基礎上,教師著重指出,因為方程組在有解的前提下,兩個方程中同一個未知數(shù)所表示的是同一個數(shù)值,故可以用它的等量代換,即使“代入”成為可能。而代入的目的就是為了消元,使二元方程轉(zhuǎn)化為一元方程,從而使問題最終得到解決。

二元一次方程教案4

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  代入消元法解二元一次方程組

  2.內(nèi)容解析

  二元一次方程組是解決含有兩個提供運算未知數(shù) 的問題的有力工具,也是解決后續(xù)一些數(shù)學問題的基礎。其解法將為解決這些問題的工具。如用待定系數(shù)法求一次函數(shù)解析式,

  在平面直角坐標系中求兩直線交點坐標等.

  解二元一次方程組就是要把二元化為一元。而化歸的方法就是代入消元法,這一方法同樣是解三元一次方程組的基本思路,是通法。化歸思想在本節(jié)中有很好的體現(xiàn)。

  本節(jié)課的教學重點是:會用代入消元法解一些簡單的二元一次方程組,體會解二元一次方程組的思路是消元.

  二、目標和目標解析

  1.教學目標

  (1)會用代入消元法解一些簡單的二元一次方程組

  (2)理解解二元一次方程組的思路是消元,體會化歸思想

  2.教學目標解析

  (1)學生能掌握代入消元法解一些簡單的二元一次方程組的一般步驟,并能正確求出簡單的.二元一次方程組的解,

  (2)要讓學生經(jīng)歷探究的過程.體會二元一次方程組的解法與一元一次方程的解法的關系,進一步體會消元思想和化歸思想

  三、教學問題診斷分析

  1.學生第一次遇到二元問題,為什么要向一元轉(zhuǎn)化,如何進行轉(zhuǎn)化。需要結合實際問題進行分析。由于方程組的兩個方程中同一個未知數(shù)表示的是同一數(shù)量,通過觀察對照,可以發(fā)現(xiàn)二元一次方程組向 一元一次方程轉(zhuǎn)化的思路

  2.解二元一次方程組的步驟多,每一步需要理解每一步的目的和依據(jù),正確進行操作,把探究過程分解細化,逐一實施。

  本節(jié)教學難點理:把二元向一元的轉(zhuǎn)化,掌握代入消元法解二元一次方程組的一般步驟。

  四、教學過程設計

  1.創(chuàng)設情境,提出問題

  問題1

  籃球聯(lián)賽中,每場都要分出勝負,每隊勝1場得2分,負1場得1分,某隊10場比賽中得到16分,那么這個隊勝負場數(shù)分別是多少?你能用一元一次方程解決這個問題嗎?

  師生活動:學生回答:能。設勝x場,負(10-x)場。根據(jù)題意,得2x+(10-x)=16

  x=6,則勝6場,負4場

  教師追問:你能根據(jù)問題中的等量關系列出二元一次方程組嗎?

  師生活動:學生回答:能.設勝x場,負y場.根據(jù)題意,得

  我們在上節(jié)課,通過列表找公共解的方法得到了這個方程組的解,x=6,y=4.顯然這樣的方法需要一個個嘗試,有些麻煩,能不能像解一元一次方程那樣來求出方程組的解呢?

  這節(jié)課我們就來探究如何解二元一次方程組.

  設計意圖:用引言的問題引人本節(jié)課內(nèi)容,先列一元一次方程解決這個問題,再二元一次方程組,為后面教學做好了鋪墊.

  問題2 對比方程和方程組,你能發(fā)現(xiàn)它們之間的關系嗎?

  師生活動:通過對實際問題的分析,認識方程組中的兩個y都是這個隊的負場數(shù),由此可以由一個方程得到y(tǒng)的表達式,并把它代入另一個方程,變二元為一元,把陌生知識轉(zhuǎn)化為熟悉的知識。

  師生活動:根據(jù)上面分析,你們會解這個方程組了嗎?

  學生回答:會.

  由①,得y=10-x ③

  把③代入②,得2x+(10-x)=16 x=6

  設計意圖:共同探究,體會消元的過程.

  問題3 教師追問:你能把③代入①嗎?試一試?

  師生活動:學生回答:不能,通過嘗試,x抵消了.

  設計意圖:由于方程③是由方程①,得來的,它不能又代回到它本身。讓學生實際操作,得到體驗,更好地認識這一點.

  教師追問:你能求y的值嗎?

  師生活動:學生回答:把x=6代入③得y=4

  教師追問:還能代入別的方程嗎?

  學生回答:能,但是沒有代入③簡便

  教師追問:你能寫出這個方程組的解,并給出問題的答案嗎?

  學生回答:x=6,y=4,這個隊勝6場,負4場

  設計意圖:讓學生考慮求另一個未知數(shù)的過程,并如何優(yōu)化解法。

  師生活動:先讓學生獨立思考,再追問.在這種解法中,哪一步最關鍵?為什么?

  學生回答:代入這一步

  教師總結:這種方法叫代入消元法。

  教師追問:你能先消x嗎?

  學生紛紛動手完成。

  設計意圖:讓學生嘗試不同的代入消元法,為后面學習選擇簡單的代入方法做鋪墊.

  2. 應用新知,拓展思維

  例 用代入法解二元一次方程組

  師生活動,把學生分兩組,一組先消x, 一組先消y,然后每組各派一名代表上黑板完成。

  設計意圖:借助本題,充分發(fā)揮學生的合作探究精神,通過比較,讓學生自主認識代入消元法,并學會優(yōu)選解法.

  3.加深認識,鞏固提高

  練習 用代入法解二元一次方程組

  設計意圖:提醒并指導學生要先分析方程組的結構特征,學會優(yōu)選解法。在練習的基礎上熟練用代入消元法解二元一次方程組.

  4.歸納總結,知識升華

  師生活動,共同回顧本節(jié)課的學習過程,并回答以下問題

  1. 代入消元法解二元一次方程組有哪些步驟?

  2. 解二元一次方程組的基本思路是什么?

  3.在探究解法的過程中用到了哪些思想方法?

  4.你還有哪些收獲?

  設計意圖:通過這一活動的設計,提高學生對所學知識的遷移能力和應用意識;培養(yǎng)學生自我歸納概括的能力.

  5. 布置作業(yè)

  教科書第93頁第2題

  五、目標檢測設計

  用代入法解下列二元一次方程組

  設計意圖:考查學生對代入法解二元一次方程組的掌握情況.

二元一次方程教案5

  學習目標

  1、認識并會判斷二元一次方程和二元一次方程組。

  2、了解二元一次方程和二元一次方程組的解并會檢驗一對數(shù)值是不是二元一次方程(組)的解。

  重點難點

  重點:二元一次方程(組)的含義及檢驗一對數(shù)是否是某個二元一次方程(組)的解。

  難點:求二元一次方程的正整數(shù)解。

  學前準備

  1、知識回顧:

 。1)方程的概念;

 。2)一元一次方程的'概念;

 。3)什么是方程的解?

 。4)一元一次方程的解如何表示?

  2、合作學習:

 、傩〖t到郵局寄掛號信,需要郵資3元8角、小紅有票額為6角和8角的郵票若干張,問各需要多少張這兩種面額的郵票?這個問題中有幾個未知數(shù),能列一元一次方程求解嗎?

  如果設需要票額為6角的郵票x張,需要票額為8角的郵票y張,你能列出方程嗎?

  ②在高速公路上,一輛轎車行駛2時的路程比一輛卡車行駛3時的路程還多20千米,如果設轎車的速度是a千米/小時,卡車的速度是b千米/小時,你能列出方程嗎?

二元一次方程教案6

  教學目標

  1.使學生會用代入消元法解二元一次方程組;

  2.理解代入消元法的基本思想體現(xiàn)的“化未知為已知”,“變陌生為熟悉”的化歸思想方法;

  3.在本節(jié)課的教學過程中,逐步滲透樸素的辯證唯物主義思想.

  教學重點和難點

  重點:用代入法解二元一次方程組.

  難點:代入消元法的基本思想.

  課堂教學過程設計

  一、從學生原有的認知結構提出問題

  1.誰能造一個二元一次方程組?為什么你造的方程組是二元一次方程組?

  2.誰能知道上述方程組(指學生提出的方程組)的解是什么?什么叫二元一次方程組的解?

  3.上節(jié)課我們提出了雞兔同籠問題:(投影)一個農(nóng)民有若干只雞和兔子,它們共有50個頭和140只腳,問雞和兔子各有多少?設農(nóng)民有x只雞,y只兔,則得到二元一次方程組

  對于列出的這個二元一次方程組,我們?nèi)绾吻蟪鏊慕饽兀?學生思考)教師引導并提出問題:若設有x只雞,則兔子就有(50-x)只,依題意,得2x+4(50-x)= 140從而可解得,x=30,50-x=20,使問題得解.

  問題:從上面一元一次方程解法過程中,你能得出二元一次方程組串問題,進一步引導學生找出它的解法) (1)在一元一次方程解法中,列方程時所用的等量關系是什么?(2)該等量關系中,雞數(shù)與兔子數(shù)的表達式分別含有幾個未知數(shù)?(3)前述方程組中方程②所表示的等量關系與用一元一次方程表示的等量關系是否相同?

  (4)能否由方程組中的方程②求解該問題呢?

  (5)怎樣使方程②中含有的兩個未知數(shù)變?yōu)橹缓幸粋未知數(shù)呢?(以上問題,要求學生獨立思考,想出消元的方法)結合學生的回答,教師作出講解.

  由方程①可得y=50-x③,即兔子數(shù)y用雞數(shù)x的代數(shù)式50-x表示,由于方程②中的y與方程①中的y都表示兔子的只數(shù),故可以把方程②中的y用(50-x)來代換,即把方程③代入方程②中,得2x+4(50-x)=140,解得x=30.

  將x=30代入方程③,得y=20.

  即雞有30只,兔有20只.

  本節(jié)課,我們來學習二元一次方程組的解法.

  二、講授新課例1解方程組

  分析:若此方程組有解,則這兩個方程中同一個未知數(shù)就應取相同的值.因此,方程②中的y就可用方程①中的表示y的代數(shù)式來代替.解:把①代入②,得3x+2(1-x)=5,3x+2-2x=5,所以x=3.把x=3代入①,得y=-2.

  (本題應以教師講解為主,并板書,同時教師在最后應提醒學生,與解一元一次方程一樣,要判斷運算的結果是否正確,需檢驗.其方法是將所求得的一對未知數(shù)的值分別代入原方程組里的每一個方程中,看看方程的左、右兩邊是否相等.檢驗可以口算,也可以在草稿紙上驗算)教師講解完例1后,結合板書,就本題解法及步驟提出以下問題:1.方程①代入哪一個方程?其目的是什么?2.為什么能代入?

  3.只求出一個未知數(shù)的值,方程組解完了嗎?

  4.把已求出的未知數(shù)的值,代入哪個方程來求另一個未知數(shù)的值較簡便?在學生回答完上述問題的基礎上,教師指出:這種通過代入消去一個未知數(shù),使二元方程轉(zhuǎn)化為一元方程,從而方程組得以求解的方法叫做代入消元法,簡稱代入法.例2解方程組

  分析:例1是用y=1-x直接代入②的..例2的兩個方程都不具備這樣的條件(即用含有一個未知數(shù)的代數(shù)式表示另一個未知數(shù)),所以不能直接代入.為此,我們需要想辦法創(chuàng)造條件,把一個方程變形為用含x的代數(shù)式表示y(或含y的代數(shù)式表示x).那么選用哪個方程變形較簡便呢?通過觀察,發(fā)現(xiàn)方程②中x的系數(shù)為1,因此,可先將方程②變形,用含有y的代數(shù)式表示x,再代入方程①求解.解:由②,得x=8-3y,③把③代入①,得(問:能否代入②中?)

  2(8-3y)+5y=-21,-y=-37,所以y=37.

  (問:本題解完了嗎?把y=37代入哪個方程求x較簡單?)把y=37代入③,得x= 8-3×37,所以x=-103.

  (本題可由一名學生口述,教師板書完成)

  三、課堂練習(投影)用代入法解下列方程組:

  四、師生共同小結

  在與學生共同回顧了本節(jié)課所學內(nèi)容的基礎上,教師著重指出,因為方程組在有解的前提下,兩個方程中同一個未知數(shù)所表示的是同一個數(shù)值,故可以用它的等量代換,即使“代入”成為可能.而代入的目的就是為了消元,使二元方程轉(zhuǎn)化為一元方程,從而使問題最終得到解決.

  五、作業(yè)

  用代入法解下列方程組:

  5.x+3y=3x+2y=7.

二元一次方程教案7

  一、復習引入

  (學生活動)解下列方程:

  (1)2x2+x=0(用配方法) (2)3x2+6x=0(用公式法)

  老師點評:(1)配方法將方程兩邊同除以2后,x前面的系數(shù)應為12,12的'一半應為14,因此,應加上(14)2,同時減去(14)2.(2)直接用公式求解.

  二、探索新知

  (學生活動)請同學們口答下面各題.

  (老師提問)(1)上面兩個方程中有沒有常數(shù)項?

  (2)等式左邊的各項有沒有共同因式?

  (學生先答,老師解答)上面兩個方程中都沒有常數(shù)項;左邊都可以因式分解.

  因此,上面兩個方程都可以寫成:

  (1)x(2x+1)=0 (2)3x(x+2)=0

  因為兩個因式乘積要等于0,至少其中一個因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.

  (2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何實現(xiàn)降次的?)

  因此,我們可以發(fā)現(xiàn),上述兩個方程中,其解法都不是用開平方降次,而是先因式分解使方程化為兩個一次式的乘積等于0的形式,再使這兩個一次式分別等于0,從而實現(xiàn)降次,這種解法叫做因式分解法.

  例1 解方程:

  (1)10x-4.9x2=0 (2)x(x-2)+x-2=0 (3)5x2-2x-14=x2-2x+34 (4)(x-1)2=(3-2x)2

  思考:使用因式分解法解一元二次方程的條件是什么?

  解:略 (方程一邊為0,另一邊可分解為兩個一次因式乘積.)

  練習:下面一元二次方程解法中,正確的是( )

  A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7

  B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35

  C.(x+2)2+4x=0,∴x1=2,x2=-2

  D.x2=x,兩邊同除以x,得x=1

  三、鞏固練習

  教材第14頁 練習1,2.

  四、課堂小結

  本節(jié)課要掌握:

  (1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其應用.

  (2)因式分解法要使方程一邊為兩個一次因式相乘,另一邊為0,再分別使各一次因式等于0.

  五、作業(yè)布置

  教材第17頁習題6,8,10,11

二元一次方程教案8

  學習目標 :會運用代入消元法解二元一次方程組.

  學習重難點:

  1、會用代入法解二元一次方程組。

  2、靈活運用代入法的技巧.

  學習過程:

  一、基本概念

  1、二元一次方程組中有兩個未知數(shù),如果消去其中一個未知數(shù),那么就把二元一次方程組轉(zhuǎn)化為我們熟悉的一元一次方程。我們可以先求出一個未知數(shù),然后再求另一個未知數(shù),。這種將未知數(shù)的個數(shù)由多化少、逐一解決的思想,叫做____________。

  2、把二元一次方程組中一個方程的一個未知數(shù)用含另一個未知數(shù)的式子表示出來,再代入另一個方程,實現(xiàn)消元,進而求得這個二元一次方程組的解,這種方法叫做________,簡稱_____。

  3、代入消元法的步驟:

  二、自學、合作、探究

  1、將方程5x-6y=12變形:若用y的式子表示x,則x=______,當y=-2時,x=_______;若用含x的.式子表示y,則y=______,當x=0時,y=________ 。

  2、在方程2x+6y-5=0中,當3y=-4時,2x= ____________。

  3、若 的解,則a=______,b=_______。

  4、若方程y=1-x的解也是方程3x+2y=5的解,則x=____,y=____。

  5、用代人法解方程組 ①②,把____代人____,可以消去未知數(shù)______。

  6、已知方程組 的解也是方程組 的解,則a=_______,b=________ ,3a+2b=___________。

  7、已知x=1和x=2都滿足關于x的方程x2+px+q=0,則p=_____,q=________ 。

  8、當k=______時,方程組 的解中x與y的值相等。

  9、用代入法解下列方程組:

  ⑴ ⑵ ⑶

  二、訓練

  1、方程組 的解是( )

  A. B. C. D.

  2、已知二元一次方程3x+4y=6,當x、y互為相反數(shù)時,x=_____,y=______;當x、y相等時,x=______,y= _______ 。

  3、若2ay+5b3x與-4a2xb2-4y是同類項,則a=______,b=_______。

  4、對于關于x、y的方程y=kx+b,k比b大1,且當x= 時,y= ,則k、b的值分別是( )

  A. B.2,1 C.-2,1 D.-1,0

  5、用代入法解下列方程組

 、 ⑵

  6、如果(5a-7b+3)2+ =0,求a與b的值。

  7、已知2x2m-3n-7-3ym+3n+6=8是關于x,y的二元一次方程,求n2m

  8、若方程組 與 有公共的解,求a,b.

二元一次方程教案9

  教學目標

  1.會用加減法解一般地二元一次方程組。

  2.進一步理解解方程組的消元思想,滲透轉(zhuǎn)化思想。

  3.增強克服困難的.勇力,提高學習興趣。

  教學重點

  把方程組變形后用加減法消元。

  教學難點

  根據(jù)方程組特點對方程組變形。

  教學過程

  一、復習引入

  用加減消元法解方程組。

  二、新課。

  1.思考如何解方程組(用加減法)。

  先觀察方程組中每個方程x的系數(shù),y的系數(shù),是否有一個相等;蚧橄喾磾(shù)?

  能否通過變形化成某個未知數(shù)的系數(shù)相等,或互為相反數(shù)?怎樣變形。

  學生解方程組。

  2.例1.解方程組

  思考:能否使兩個方程中x(或y)的系數(shù)相等(或互為相反數(shù))呢?

  學生討論,小組合作解方程組。

  提問:用加減消元法解方程組有哪些基本步驟?

  三、練習。

  1.P40練習題(3)、(5)、(6)。

  2.分別用加減法,代入法解方程組。

  四、小結。

  解二元一次方程組的加減法,代入法有何異同?

  五、作業(yè)。

  P33.習題2.2A組第2題(3)~(6)。

  B組第1題。

  選作:閱讀信息時代小窗口,高斯消去法。

  后記:

  2.3二元一次方程組的應用(1)

二元一次方程教案10

  一、教材分析

  1、教材的地位和作用

  函數(shù)、方程和不等式都是人們刻畫現(xiàn)實世界的重要數(shù)學模型。用函數(shù)的觀點看方程(組)與不等式,使學生不僅能加深對方程(組)、不等式的理解,提高認識問題的水平,而且能從函數(shù)的角度將三者統(tǒng)一起來,感受數(shù)學的統(tǒng)一美。本節(jié)課是學生學習完一次函數(shù)、一元一次方程及一元一次不等式的聯(lián)系后對一次函數(shù)和二元一次方程(組)關系的探究,學生在探索過程中體驗數(shù)形結合的思想方法和數(shù)學模型的應用價值,這對今后的學習有著十分重要的意義。

  2、教學重難點

  重點:一次函數(shù)與二元一次方程(組)關系的探索。

  難點:綜合運用方程(組)、不等式和函數(shù)的知識解決實際問題。

  3、教學目標

  知識技能:理解一次函數(shù)與二元一次方程(組)的關系,會用圖象法解二元一次方程組。

  數(shù)學思考:經(jīng)歷一次函數(shù)與二元一次方程(組)關系的探索及相關實際問題的解決過程,學會用函數(shù)的觀點去認識問題。

  解決問題:能綜合應用一次函數(shù)、一元一次方程、一元一次不等式、二元一次方程(組)解決相關實際問題。

  情感態(tài)度:在探究活動中培養(yǎng)學生嚴謹?shù)目茖W態(tài)度和勇于探索的科學精神,在師生、生生的交流活動中,學會與人合作,學會傾聽、欣賞和感悟,體驗數(shù)學的價值,建立自信心。

  二、教法說明

  對于認知主體——學生來說,他們已經(jīng)具備了初步探究問題的能力,但是對知識的主動遷移能力較弱,為使學生更好地構建新的認知結構,促進學生的發(fā)展,我將在教學中采用探究式教學法。以學生為中心,使其在“生動活潑、民主開放、主動探索”的氛圍中愉快地學習。

  三、教學過程

  (一)感知身邊數(shù)學

  學生已經(jīng)學習過列方程(組)解應用題,因此可能列出一元一次方程或二元一次方程組,用方程模型解決問題。結合前面對一次函數(shù)與一元一次方程、一元一次不等式之間關系的探究,我自然地提出問題:“一次函數(shù)與二元一次方程組之間是否也有聯(lián)系呢?”,從而揭示課題。

  [設計意圖]建構主義認為,在實際情境中學習可以激發(fā)學生的學習興趣。因此,用“上網(wǎng)收費”這一生活實際創(chuàng)設情境,并用問題啟發(fā)學生去思、鼓勵學生去探、激勵學生去說,努力給學生造成“心求通而未能得,口欲言而不能說”的情勢,從而喚起學生強烈的求知欲,使他們以躍躍欲試的姿態(tài)投入到探索活動中來。

  教學引入

  師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形,F(xiàn)在請同學們拿出一個長方形紙條,按動畫所示進行折疊處理。

  動畫演示:

  場景一:正方形折疊演示

  師:這就是我們得到的正方形。下面請同學們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對角線之間的關系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。

  [學生活動:各自測量。]

  鼓勵學生將測量結果與鄰近同學進行比較,找出共同點。

  講授新課

  找一兩個學生表述其結論,表述是要注意糾正其語言的規(guī)范性。

  動畫演示:

  場景二:正方形的性質(zhì)

  師:這些性質(zhì)里那些是矩形的性質(zhì)?

  [學生活動:尋找矩形性質(zhì)。]

  動畫演示:

  場景三:矩形的性質(zhì)

  師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。

  [學生活動;尋找菱形性質(zhì)。]

  動畫演示:

  場景四:菱形的性質(zhì)

  師:這說明正方形具有矩形和菱形的全部性質(zhì)。

  及時提出問題,引導學生進行思考。

  師:根據(jù)這些性質(zhì),我們能不能給正方形下一個定義?怎么樣給正方形下一個準確的定義?

  [學生活動:積極思考,有同學做躍躍欲試狀。]

  師:請同學們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。

  學生應能夠向出十種左右的定義方式,其余作相應鼓勵,把以下三種板書:

  “有一組鄰邊相等的矩形叫做正方形!

  “有一個角是直角的菱形叫做正方形!

  “有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形!

  [學生活動:討論這三個定義正確不正確?三個定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]

  師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關系梳理一下。

  (二)享受探究樂趣

  1、探究一次函數(shù)與二元一次方程的關系

  [設計意圖]用一連串的問題引導學生發(fā)現(xiàn)一次函數(shù)與二元一次方程在數(shù)與形兩個方面的關系,為探索二元一次方程組的解與直線交點坐標的關系作好鋪墊。

  2、探究一次函數(shù)與二元一次方程組的關系

  [設計意圖]學生經(jīng)過自主探索、合作交流,從數(shù)和形兩個角度認識一次函數(shù)與二元一次方程組的關系,真正掌握本節(jié)課的重點知識,從而在頭腦中再現(xiàn)知識的形成過程,避免單純地記憶,使學習過程成為一種再創(chuàng)造的過程。此時教師及時對學生進行鼓勵,充分肯定學生的探究成果,關注學生的情感體驗。

  (三)乘坐智慧快車

  例題:我市一家電信公司給顧客提供兩種上網(wǎng)收費方式:方式A以每分0。1元的價格按上網(wǎng)時間計費;方式B除收月基費20元外再以每分0。05元的價格按上網(wǎng)時間計費。如何選擇收費方式能使上網(wǎng)者更合算?

  [設計意圖]為培養(yǎng)學生的發(fā)散思維和規(guī)范解題的習慣,引導學生將上網(wǎng)問題延伸為例題,并用問題:“你家選擇的上網(wǎng)收費方式好嗎?”再次激起學生強烈的求知欲望和主人翁的`學習姿態(tài)。通過此問題的探究,使學生有效地理解本節(jié)課的難點,體會數(shù)形結合這一思想方法的應用。

  (四)體驗成功喜悅

  1、搶答題

  2、旅游問題

  [設計意圖]抓住學生對競爭充滿興趣的心理特征,用搶答題使學生的眼、耳、腦、口得到充分的調(diào)動,并在搶答中品味成功的快樂,提高思維的速度。在學生感興趣的旅游問題中,進一步培養(yǎng)學生應用數(shù)學的意識,更好地促進學生對本節(jié)課難點的理解和應用,幫助學生不斷完善新的認知結構。

  (五)分享你我收獲

  在課堂臨近尾聲時,向?qū)W生提出:通過今天的學習,你有什么收獲?你印象最深的是什么?

  [設計意圖]培養(yǎng)學生歸納和語言表達能力,鼓勵學生從數(shù)學知識、數(shù)學方法和數(shù)學情感等方面進行自我評價。

  (六)開拓嶄新天地

  1、數(shù)學日記

  2、布置作業(yè)

  [設計意圖]新課程強調(diào)發(fā)展學生數(shù)學交流的能力,用數(shù)學日記給學生提供一種表達數(shù)學思想方法和情感的方式,以體現(xiàn)評價體系的多元化,并使學生嘗試用數(shù)學的眼睛觀察事物,體驗數(shù)學的價值。作業(yè)由必做題和選做題組成,體現(xiàn)分層教學,讓“不同的人在數(shù)學上得到不同的發(fā)展”。

  四、教學設計反思

  1、貫穿一個原則——以學生為主體的原則

  2、突出一個思想——數(shù)形結合的思想

  3、體現(xiàn)一個價值——數(shù)學建模的價值

  4、滲透一個意識——應用數(shù)學的意識

二元一次方程教案11

  二元一次方程

  §11.1 二元一次方程

  【教學目標】

  【知識目標】

  了解二元一次方程、二元一次方程組及其解等有關概念,并會判斷一組數(shù)是不是某個二元一次方程組的解。

  【能力目標】

  通過討論和練習,進一步培養(yǎng)學生的觀察、比較、分析的能力。

  【情感目標】

  通過對實際問題的分析,使學生進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學模型,培養(yǎng)學生良好的數(shù)學應用意識。

  【重點】

  二元一次方程組的含義

  【難點】

  判斷一組數(shù)是不是某個二元一次方程組的解,培養(yǎng)學生良好的數(shù)學應用意識。

  【教學過程】

  一、引入、實物投影

  1、師:在一望無際呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說:“累死我了”,小馬說:“你還累,這么大的個,才比我多馱2個”老牛氣不過地說:“哼,我從你背上拿來一個,我的包裹就是你的2倍!”,小馬天真而不信地說:“真的?!”同學們,你們能否用數(shù)學知識幫助小馬解決問題呢?

  2、請每個學習小組討論(討論2分鐘,然后發(fā)言)

  這個問題由于涉及到老牛和小馬的馱包裹的兩個未知數(shù),我們設老牛馱x個包裹,小馬馱y個包裹,老牛的包裹數(shù)比小馬多2個,由此得方程x-y=2,若老牛從小馬背上拿來1個包裹,這時老牛的包裹是小馬的2倍, 得方程:x+1=2(y-1)

  師:同學們能用方程的方法來發(fā)現(xiàn)、解決問題這很好,上面所列方程有幾個未知數(shù)?含未知數(shù)的項的次數(shù)是多少? (含有兩個未知數(shù),并且所含未知數(shù)項的次數(shù)是1)

  師:含有兩個未知數(shù),并且含未知數(shù)項的次數(shù)都是1的方程叫做二元一次方程

  注意:這個定義有兩個地方要注意①、含有兩個未知數(shù),②、含未知數(shù)的次數(shù)是一次

  練習(投影)

  下列方程有哪些是二元一次方程

  +2y=1 xy+x=1 3x-=5 x2-2=3x

  xy=1 2x(y+1)=c 2x-y=1 x+y=0

  二、議一議、

  師:上面的方程中x-y=2,x+1=2(y-1)的x含義相同嗎?y呢?

  師:由于x、y的含義分別相同,因而必同時滿足x-y=2和x+1=2(y-1),我們把這兩個方程用大括號聯(lián)立起來,寫成

  x-y=2

  x+1=2(y-1)

  像這樣含有兩個未知數(shù)的兩個一次方程所組成的一組方程,叫做二元一次方程組。

  如: 2x+3y=3 5x+3y=8

  x-3y=0 x+y=8

  三、做一做、

  1、 x=6,y=2適合方程x+y=8嗎?x=5,y=3呢?x=4,y=4呢?你還能找到其他x,y值適合x+y=8方程嗎?

  2、 X=5,y=3適合方程5x+3y=34嗎?x=2,y=8呢?

  你能找到一組值x,y同時適合方程x+y=8和5x+3y=34嗎?

  x=6,y=2是方程x+y=8的一個解,記作 x=6 同樣, x=5

  y=2 y=3

  也是方程x+y=8的一個解,同時 x=5 又是方程5x+3y=34的一個解,

  y=3

  四、隨堂練習(P103)

  五、小結:

  1、 含有兩未知數(shù),并且含有未知數(shù)的項的.次數(shù)是一次的整式方程叫做二元一次方程。

  2、 二元一次方程的解是一個互相關聯(lián)的兩個數(shù)值,它有無數(shù)個解。

  3、 含有兩個未知數(shù)的兩個二元一次方程組成的一組方程,叫做二元一次方程組,它的解是兩個方程的公共解,是一組確定的值。

  六、教后感:

  七、自備部分

二元一次方程教案12

  教學目標知識技能

  會根據(jù)行程問題、百分比問題情境及條件,列出方程組,解行程問題及百分比問題;2.使學生掌握運用方程組解決實際問題的一般步驟.

  數(shù)學思考

  讓學生經(jīng)歷和體驗列方程組解決實際問題的過程,進一步體會方程組是刻畫現(xiàn)實世界的有效數(shù)學模型.

  問題解決

  通過列方程組解應用題,培養(yǎng)學生的數(shù)學應用能力,增強列方程解決實際問題的能力,進一步提高學生解二元一次方程組的技能.

  情感態(tài)度

  進一步豐富學生學習數(shù)學的成功體驗,激發(fā)學生對數(shù)學學習的好奇心,進一步形成積極參與數(shù)學活動、主動與他人合作交流的意識.

  教學重點

  列二元一次方程組解行程問題和百分比問題.

  教學難點

  根據(jù)題意找出等量關系,列出方程.

  授課類型新授課課時

  教具多媒體課件

  (續(xù)表)

  教學活動

  教學步驟師生活動設計意圖

  回顧問題1:解二元一次方程組的基本思想是________,解法有________.問題2:七年級上冊我們學習了列一元一次方程解應用題,那么你還記得它的一般步驟嗎?通過復習舊知,為本節(jié)課的學習做好鋪墊,掃除知識障礙.

  活動一:創(chuàng)設情境導入新課

  【課堂引入】圖1-3-3《孫子算經(jīng)》大約產(chǎn)生于一千五百年前,現(xiàn)在傳本的《孫子算經(jīng)》共三卷,其中卷下第31題,可謂是后世“雞兔同籠”題的始祖,書中是這樣敘述的:“今有雉兔同籠,上有三十五頭,下有九十四足,問雉兔各幾何?”問題1:“上有三十五頭”的意思是什么?“下有九十四足”呢?問題2:你能解決這個有趣的問題嗎?以數(shù)學歷史故事為背景,激發(fā)學生的愛國熱情,感受數(shù)學在生活中的應用,吸引學生的注意力,激發(fā)學生的學習興趣,同時為本課的學習做好鋪墊.

  活動二:實踐探究交流新知

  【探究1】雞免同籠問題①一元一次方程解法(實物投影).解:設有雞x只,則有兔(35-x)只.根據(jù)題意,得2x+4(35-x)=94.2x+140-4x=94.-2x=-46.x=23.35-x=12.答:有雞23只,兔12只.②二元一次方程組解法(實物投影).解:設有雞x只,兔y只.根據(jù)題意,得①×2,得2x+2y=70,③②-③,得2y=24,y=12.把y=12代入①,得x=23.答:有雞23只,兔12只.你能比較兩種解法的優(yōu)劣嗎?

  【探究2】行程問題情境:小琴去縣城要經(jīng)過外祖母家,第一天下午她從家走到外祖母家,第二天上午,她從外祖母家出發(fā),勻速前進,走了2小時和5小時后,離她自己家的距離分別為13千米、25千米.你能算出她的速度嗎?能算出她家與外祖母家相距多遠嗎?問題1:你能畫線段表示本題的數(shù)量關系嗎?問題2:填空:(用含s,v的代數(shù)式表示)設小琴的速度是v千米/時,她家與外祖母家相距s千米,第二天她走2小時的路程是________千米,此時她離家距離是________千米;她走5小時的`路程是________千米,此時她離家的距離是________千米.

  【探究3】百分比問題情境:兩塊合金,一塊含金95%,另一塊含金80%,將它們與2克純金熔合得到含金90.6%的新合金25克,計算原來兩塊合金的重量.問題1:設原來含金95%的合金為x克,含金80%的合金為y克.熔合后新合金中的含金量為25×90.6%,熔合前的總含金量為95%x+80%y+2,因此可以列出方程95%x+80%y+2=25×90.6%.問題2:兩塊合金的重量,加上2克純金的重量等于新合金的重量,據(jù)此你能列出什么樣的方程呢?引導學生體會兩種解法的優(yōu)點和不足,為學生建立方程組模型做鋪墊.對于二元一次方程組的解法,如果學生學習存在困難,可以借助微視頻講解,或者教師設計表格,幫助學生分析等量關系.

  活動三:開放訓練體現(xiàn)應用

  【應用舉例】例1甲、乙兩人都從A地到B地,甲步行,乙騎自行車,如果甲先走6千米乙再動身,則乙走0.75小時后恰好與甲同時到達B地;如果甲先走1小時,那么乙用0.5小時可追上甲,求兩人的速度及AB兩地的距離.變式訓練1.兩碼頭相距280千米,一船順流航行需14小時,逆流航行需20小時,求船在靜水中的速度和水流的速度.2.從小華家到姥姥家有一段上坡路和一段下坡路.星期天,小華騎自行車去姥姥家,如果保持上坡每小時行3 km,下坡每小時行5 km,她到姥姥家需要行66分鐘,從姥姥家回來時需要行78分鐘才能到家.那么,從小華家到姥姥家上坡路和下坡路各有多少千米,姥姥家離小華家有多遠?例2革命老區(qū)百色某芒果種植基地,去年結余500萬元,估計今年可結余960萬元,并且今年的收入比去年高15%,支出比去年低10%,求去年的收入與支出各是多少萬元.鞏固用列二元一次方程組解應用題的思想,掌握列二元一次方程組解應用題的方法和步驟.

  【拓展提升】例3某鐵路橋長1000 m,現(xiàn)有一列火車從橋上通過,測得該火車從開始上橋到完全過橋共用了1 min,整列火車完全在橋上的時間共40 s.求火車的速度和長度.例4從甲地到乙地的路有一段上坡與一段平路,如果保持上坡每小時走3千米,平路每小時走4千米,下坡每小時走5千米.那么從甲地到乙地需54分,從乙地到甲地需42分,從甲地到乙地全程是多少千米?通過練習,使學生熟練掌握解決問題的方法,提升解決問題的能力.

  活動四:課堂總結反思

  【當堂訓練】1.甲、乙二人練習跑步,如果甲讓乙先跑10米,甲跑5秒鐘就可追上乙,如果甲讓乙先跑2秒鐘,那么甲跑4秒鐘就追上乙.若設甲、乙每秒鐘分別跑x米,y米,則列出方程組應為( )A. B.C. D.2.一輪船順流航行的速度為a千米/時,逆流航行的速度為b千米/時,那么船在靜水中的速度為多少千米/時( )A.a(chǎn)+b B.(a-b) C.(a+b) D.a(chǎn)-b3.甲、乙兩人從相距36千米的兩地相向而行,如果甲比乙先走2小時,那么他們在乙出發(fā)后2.5小時相遇;如果乙比甲先走2小時,那么他們在甲出發(fā)后3小時相遇.設甲每小時走x千米,乙每小時走y千米,可列出方程組________________.通過設置當堂訓練,進一步鞏固所學新知,同時檢測學習效果,做到堂堂清.框架圖式總結,更容易形成知識網(wǎng)絡.

  【教學反思】①[授課流程反思]通過古代的“雞兔同籠”問題,進行列二元一次方程組解決實際問題的訓練,這樣,一方面在列方程組的建模過程中,強化了方程思想,培養(yǎng)了學生列方程(組)解決實際問題的意識和應用能力.另一方面,將解方程組的技能訓練與實際問題的解決融為一體,在實際問題的解決過程中,進一步提高學生解方程組的技能.

 、赱講授效果反思]通過師生互動,讓學生體會數(shù)學的實用性,掌握列方程組解應用題的思考方法及解題步驟.

 、踇師生互動反思]在建立方程思想的過程中采用了循序漸進的思路,由算術方法到一元一次方程再到二元一次方程組,遵循了學生的思維梯度,逐步建立起學生用二元一次方程組解應用題的思想,充分感受它的優(yōu)點和思維的簡化.

 、躘習題反思]好題題號__________________________________________錯題題號__________________________________________ 反思,更進一步提升.

  活動四:課堂總結反思

二元一次方程教案13

  教學目標:

  通過學生積極思考,互相討論,經(jīng)歷探索事物之間的數(shù)量關系,形成方程模型,解方程和運用方程解決實際問題的過程進一步體會方程是刻劃現(xiàn)實世界的有效數(shù)學模型

  重點:

  讓學生實踐與探索,運用二元一次方程解決有關配套與設計的`應用題

  難點:

  尋找等量關系

  教學過程:

  看一看:課本99頁探究2

  問題:1“甲、乙兩種作物的單位面積產(chǎn)量比是1:1、5”是什么意思?

  2、“甲、乙兩種作物的總產(chǎn)量比為3:4”是什么意思?

  3、本題中有哪些等量關系?

  提示:若甲種作物單位產(chǎn)量是a,那么乙種作物單位產(chǎn)量是多少?

  思考:這塊地還可以怎樣分?

  練一練

  一、某農(nóng)場300名職工耕種51公頃土地,計劃種植水稻、棉花、和蔬菜,已知種植植物每公頃所需的勞動力人數(shù)及投入的設備獎金如下表:

  農(nóng)作物品種每公頃需勞動力每公頃需投入獎金

  水稻4人1萬元

  棉花8人1萬元

  蔬菜5人2萬元

  已知該農(nóng)場計劃在設備投入67萬元,應該怎樣安排這三種作物的種植面積,才能使所有職工都有工作,而且投入的資金正好夠用?

  問題:題中有幾個已知量?題中求什么?分別安排多少公頃種水稻、棉花、和蔬菜?

  教材106頁:探究3:如圖,長青化工廠與A、B兩地有公路、鐵路相連,這家工廠從A地購買一批每噸1000元的原料運回工廠,制成每噸8000元的產(chǎn)品運到B地。公路運價為1、5元/(噸?千米),鐵路運價為1、2元/(噸?千米),這兩次運輸共支出公路運費15000元,鐵路運費97200元。這批產(chǎn)品的銷售款比原料費與運輸費的和多多少元?

二元一次方程教案14

  一、學情分析:

  學生能夠正確解方程(組),掌握了一次函數(shù)及其圖像的基礎知識,能夠根據(jù)已知條件準確畫出一次函數(shù)圖象,已經(jīng)具備了函數(shù)的初步思想,在過去已有經(jīng)驗基礎上能夠加深對“數(shù)”和“形”間的相互轉(zhuǎn)化的認識,有小組合作學習經(jīng)驗.

  二、 學習目標:

  本節(jié)課通過探索“方程”與“函數(shù)圖像”的關系,培養(yǎng)學生數(shù)學轉(zhuǎn)化的思想,通過學習二元一次方程方程組的解與直線交點坐標之間的關系,使學生初步建立了“數(shù)”(二元一次方程)與“形”(一次函數(shù)的圖像)之間的對應關系,進一步培養(yǎng)了學生數(shù)形結合的意識和能力.因此確定本節(jié)課的教學目標為:

  1.初步理解二元一次方程和一次函數(shù)兩種數(shù)學模型之間的關系;

  2.掌握二元一次方程組和對應的兩條直線交點之間的關系,通過對兩種模型關系的理解解決問題;

  3.發(fā)展學生數(shù)形結合的意識和能力,使學生在自主探索中學會不同數(shù)學模型間的聯(lián)系.

  教學重點

  二元一次方程和一次函數(shù)的關系,二元一次方程組和對應的兩條直線交點之間的關系;

  教學難點

  通過對數(shù)學模型關系的探究發(fā)展學生數(shù)形結合和數(shù)學轉(zhuǎn)化的思想意識.

  四、教法學法

  1.教法學法

  啟發(fā)引導與自主探索相結合.

  2.課前準備

  教具:多媒體課件、三角板.

  學具:鉛筆、直尺、練習本、坐標紙.

  五、教學過程

  第一環(huán)節(jié): 探究二元一次方程和一次函數(shù)兩種數(shù)學模型之間的關系

  1. 某水箱有5噸水,若用水管向外排水,每小時排水1噸,則X小時后還剩余Y噸水.

 。1) 請找出自變量和因變量

 。2) 你能列出X,Y的關系式嗎?

  (3) X,Y的取值范圍是什么?

 。4) 在平面直角坐標系中畫出這個函數(shù)的圖形.(注意XY的取值范圍).

  2.(1)方程x+y=5的解有多少個?你能寫出這個方程的幾個解嗎?

 。2).在直角坐標系內(nèi)分別描出以這些解為坐標的點,它們在一次函數(shù)Y=5-X的圖象上嗎?

 。3).在一次函數(shù)y=?x?5的圖像上任取一點,它的坐標適合方程x+y=5嗎?

  (4).以方程x+y=5的解為坐標的所有點組成的圖像與一次函數(shù)y=?x?5的圖像相同嗎?

  x+y=5與 y=?x?5表示的關系相同

  一般地,以一個二元一次方程的解為坐標的點組成的圖象與相應的一次函數(shù)的圖象相同,是一條直線.

  目的:通過設置問題情景,讓學生感受方程x+y=5和一次函數(shù)y=?x?5相互轉(zhuǎn)化,啟發(fā)引導學生總結二元一次方程與一次函數(shù)的對應關系.

  前面研究了一個二元一次方程和相應的一個一次函數(shù)的關系,現(xiàn)在來研究兩個二元一次方程組成的方程組和相應的兩個一次函數(shù)的關系.順其自然進入下一環(huán)節(jié).

  第二環(huán)節(jié) 自主探索方程組與一次函數(shù)兩種數(shù)學模型之間的關系

  探究方程與函數(shù)的相互轉(zhuǎn)化

  1.兩個一次函數(shù)圖象的交點坐標是相應的二元

  一次方程組的解

 。1)一次函數(shù)y=5-x圖象上點的坐標適合方程x+y=5,那么一次函數(shù)y=2x-1圖象上點的坐標適合哪個方程?

 。2)兩個函數(shù)的交點坐標適合哪個方程?

  ?x?y?5(3).解方程組?驗證一下你的發(fā)現(xiàn)。 2x?y?1?

  練習:隨堂練習1 。鞏固由一次函數(shù)的交點坐標找相應的二元一次方程組的解。

  2.二元一次方程組的解是相應的兩個一次函數(shù)圖象的交點坐標。

  ?x?y?2(1)解?

  ?2x?y?5(2)以方程x+y=2

  (3)以方程2x+y=5(4)方程組的解為坐標的點在圖象上是哪個點?

  (5目的:通過自主探索,使學生初步體會“數(shù)”(二元一次方程組的解)與“形”(兩條直線)兩種模型之間的對應關系,

  由學生自主學習,十分自然地建立了數(shù)形結合的意識,學生初步感受到了“數(shù)”的問題可以轉(zhuǎn)化為“形”來處理,反之“形”的問題可以轉(zhuǎn)化成“數(shù)”來處理,培養(yǎng)了學生的創(chuàng)新意識和變式能力.

  練習:知識技能1。鞏固由方程組的解求相應的一次函數(shù)的交點坐標。更深入的體會二元一次方程組的解與一次函數(shù)交點坐標之間的對應關系。

  第三環(huán)節(jié)模型應用

  1.某公司要印制產(chǎn)品宣傳材料.

  1500元制版費. 甲印刷廠:每份材料收1元印制費, 另收 乙印刷廠:每份材料收2.5元印制費, 不收制版費.若公司要印制x份宣傳材料,y甲表示甲印刷廠的費用,y乙表示乙

  印刷廠的費用。

 。1) 請分別表示出兩個印刷廠費用與X的關系式。

 。2) 在同一直角坐標系中畫出函數(shù)的圖象。

 。3) 如何根據(jù)印刷材料的份數(shù)選擇印刷廠比較合算?

  第四環(huán)節(jié) 模型特例

  想一想

  內(nèi)容:在同一直角坐標系內(nèi), 一次函數(shù)y = x + 1 和 y = x - 2 的圖象(教材

  ?x?y??1124頁圖5-2)有怎樣的位置關系?方程組?解的情況如何?你發(fā)現(xiàn)了什x?y?2?

  么?

  二元一次方程的解和相應的兩條直線的`關系2.

 。1)觀察發(fā)現(xiàn)直線平行無交點;

 。2)小組研究計算發(fā)現(xiàn)方程組無解;

 。3)從側(cè)面驗證了兩直線有交點,對應的方程組有解,反之也成立;

  (4)歸納小結:兩平行直線的k相等;方程組中兩方程未知數(shù)的系數(shù)對應成比例方程組無解。

  目的:進一步揭示“數(shù)”與“形”轉(zhuǎn)化關系.通過想一想,將兩直線的另一種位置關系:平行與方程組無解相結合,這是對第二環(huán)節(jié)的有益補充。體現(xiàn)了從一般到特殊的的思想方法,有利于培養(yǎng)學生全面考慮問題的習慣.

  進一步培養(yǎng)了學生數(shù)形結合的意識和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化.進一步挖掘出兩直線平行與k的關系。

  效果:加深了兩條直線交點的坐標就是對應的函數(shù)表達式所組成的方程組的解的印象,培養(yǎng)了學生的計算能力和數(shù)學轉(zhuǎn)化的能力,使學生進一步領悟到應用數(shù)形結合的思想方法解題的重要性.

  第五環(huán)節(jié) 課堂小結

  內(nèi)容:以“問題串”的形式,要求學生自主總結有關知識、方法:

  1.二元一次方程和一次函數(shù)的圖像的關系;

  以二元一次方程的解為坐標的點都在相應的函數(shù)圖像上;

  一次函數(shù)圖像上的點的坐標都適合相應的二元一次方程.

  2.方程組和對應的兩條直線的關系:

  方程組的解是對應的兩條直線的交點坐標;

  兩條直線的交點坐標是對應的方程組的解;

  第六環(huán)節(jié) 作業(yè)布置

  習題5.7

二元一次方程教案15

  知識要點

  1、二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是一次的整式方程叫做~

  2、二元一次方程的解:適合二元一次方程的一組未知數(shù)的值叫做這個二元一次方程的一個解;

  3、二元一次方程組:由幾個一次方程組成并含有兩個未知數(shù)的方程組叫做二元一次方程組

  4、二元一次方程組的解:適合二元一次方程組里各個方程的一對未知數(shù)的值,叫做這個方程組里各個方程的公共解,也叫做這個方程組的解(注意:①書寫方程組的解時,必需用“”把各個未知數(shù)的值連在一起,即寫成的形式;②一元方程的解也叫做方程的根,但是方程組的解只能叫解,不能叫根)

  5、解方程組:求出方程組的`解或確定方程組沒有解的過程叫做解方程組

  6、解二元一次方程組的基本方法是代入消元法和加減消元法(簡稱代入法和加減法)

 。1)代入法解題步驟:把方程組里的一個方程變形,用含有一個未知數(shù)的代數(shù)式表示另一個未知數(shù);把這個代數(shù)式代替另一個方程中相應的未知數(shù),得到一個一元一次方程,可先求出一個未知數(shù)的值;把求得的這個未知數(shù)的值代入第一步所得的式子中,可求得另一個未知數(shù)的值,這樣就得到了方程的解

 。2)加減法解題步驟:把方程組里一個(或兩個)方程的兩邊都乘以適當?shù)臄?shù),使兩個方程里的某一個未知數(shù)的系數(shù)的絕對值相等;把所得到的兩個方程的兩邊分別相加(或相減),消去一個未知數(shù),得到含另一個未知數(shù)的一元一次方程(以下步驟與代入法相同)

  一、例題精講

  分別用代入法和加減法解方程組

  解:代入法:由方程②得:③

  將方程③代入方程①得:

  解得x=2

  將x=2代入方程②得:4-3y=1

  解得y=1

  所以方程組的解為

  加減法:

  例2.從少先隊夏令營到學校,先下山再走平路,一少先隊員騎自行車以每小時12公里的速度下山,以每小時9公里的速度通過平路,到學校共用了55分鐘,回來時,通過平路速度不變,但以每小時6公里的速度上山,回到營地共花去了1小時10分鐘,問夏令營到學校有多少公里?

  分析:路程分為兩段,平路和坡路,來回路程不變,只是上山和下山的轉(zhuǎn)變導致時間的不同,所以設平路長為x公里,坡路長為y公里,表示時間,利用兩個不同的過程列兩個方程,組成方程組

  解:設平路長為x公里,坡路長為y公里

  依題意列方程組得:

  解這個方程組得:

  經(jīng)檢驗,符合題意

  x+y=9

  答:夏令營到學校有9公里二、課堂小結:

  回顧本章內(nèi)容,總結二元一次方程組的解法和應用。

  三、作業(yè)布置:

  P25A組習題

【二元一次方程教案】相關文章:

二元一次方程的解法教學教案10-07

二元一次方程組教學教案10-07

二元一次方程組的數(shù)學教案10-07

一次函數(shù)與二元一次方程教案10-07

二元一次方程教學方案10-08

《二元一次方程與一次函數(shù)》教案10-07

數(shù)學《二元一次方程的解法》教學教案設計10-09

初中數(shù)學《二元一次方程組》的教學教案10-08

二元一次方程與一次函數(shù)的教案范文10-07