- 相關(guān)推薦
完全平方公式教案
作為一名教職工,常常要寫一份優(yōu)秀的教案,教案有助于學(xué)生理解并掌握系統(tǒng)的知識(shí)。那么你有了解過(guò)教案嗎?以下是小編幫大家整理的完全平方公式教案,僅供參考,希望能夠幫助到大家。
完全平方公式教案1
教材分析
1本節(jié)課的主題:通過(guò)一系列的探究活動(dòng),引導(dǎo)學(xué)生從計(jì)算結(jié)果中總結(jié)出完全平方公式的兩種形式
1、以教材作為出發(fā)點(diǎn),依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會(huì)、參與科學(xué)探究過(guò)程。首先提出等號(hào)左邊的兩個(gè)相乘的多項(xiàng)式和等號(hào)右邊得出的三項(xiàng)有什么關(guān)系。通過(guò)學(xué)生自主、獨(dú)立的發(fā)現(xiàn)問(wèn)題,對(duì)可能的答案做出假設(shè)與猜想,并通過(guò)多次的檢驗(yàn),得出正確的結(jié)論。學(xué)生通過(guò)收集和處理信息、表達(dá)與交流等活動(dòng),獲得知識(shí)、技能、方法、態(tài)度特別是創(chuàng)新精神和實(shí)踐能力等方面的發(fā)展。
2、用標(biāo)準(zhǔn)的數(shù)學(xué)語(yǔ)言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。
學(xué)情分析
1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識(shí)和技能:
、偻愴(xiàng)的定義。
、诤喜⑼愴(xiàng)法則
③多項(xiàng)式乘以多項(xiàng)式法則。
2、學(xué)習(xí)者對(duì)即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:
在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號(hào)的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。
教學(xué)目標(biāo)
(一)教學(xué)目標(biāo):
1、經(jīng)歷探索完全平方公式的過(guò)程,進(jìn)一步發(fā)展符號(hào)感和推力能力。
2、會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。
(二)知識(shí)與技能:經(jīng)歷從具體情境中抽象出符號(hào)的過(guò)程,認(rèn)識(shí)有理
數(shù)、實(shí)數(shù)、代數(shù)式、、;掌握必要的運(yùn)算,(包括估算)技能;探索具體問(wèn)題中的數(shù)量關(guān)系和變化規(guī)律,并能運(yùn)用代數(shù)式、、不等式、函數(shù)等進(jìn)行描述。
(四)解決問(wèn)題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問(wèn)題;嘗試從不同角度尋求解決問(wèn)題的方法,并能有效地解決問(wèn)題,嘗試評(píng)價(jià)不同方法之間的差異;通過(guò)對(duì)解決問(wèn)題過(guò)程的反思,獲得解決問(wèn)題的經(jīng)驗(yàn)。
(五)情感與態(tài)度:敢于面對(duì)數(shù)學(xué)活動(dòng)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問(wèn)題的成功體驗(yàn),有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從交流中獲益。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):能運(yùn)用完全平方公式進(jìn)行簡(jiǎn)單的計(jì)算。
難點(diǎn):會(huì)推導(dǎo)完全平方公式
教學(xué)過(guò)程
教學(xué)過(guò)程設(shè)計(jì)如下:
〈一〉、提出問(wèn)題
[引入]同學(xué)們,前面我們學(xué)習(xí)了多項(xiàng)式乘多項(xiàng)式法則和合并同類項(xiàng)法則,通過(guò)運(yùn)算下列四個(gè)小題,你能總結(jié)出結(jié)果與多項(xiàng)式中兩個(gè)單項(xiàng)式的'關(guān)系嗎?
(2m+3n)2=_______________,(-2m-3n)2=______________,
(2m-3n)2=_______________,(-2m+3n)2=_______________。
〈二〉、分析問(wèn)題
1、[學(xué)生回答]分組交流、討論
(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,
(2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。
。1)原式的特點(diǎn)。
。2)結(jié)果的項(xiàng)數(shù)特點(diǎn)。
。3)三項(xiàng)系數(shù)的特點(diǎn)(特別是符號(hào)的特點(diǎn))。
。4)三項(xiàng)與原多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系。
2、[學(xué)生回答]總結(jié)完全平方公式的語(yǔ)言描述:
兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;
兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。
3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
〈三〉、運(yùn)用公式,解決問(wèn)題
1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)
(m+n)2=____________, (m-n)2=_______________,
(-m+n)2=____________, (-m-n)2=______________,
(a+3)2=______________, (-c+5)2=______________,
(-7-a)2=______________, (0.5-a)2=______________.
2、判斷:
( )① (a-2b)2= a2-2ab+b2
( )② (2m+n)2= 2m2+4mn+n2
( )③ (-n-3m)2= n2-6mn+9m2
( )④ (5a+0.2b)2= 25a2+5ab+0.4b2
( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2
( )⑥ (-a-2b)2=(a+2b)2
( )⑦ (2a-4b)2=(4a-2b)2
( )⑧ (-5m+n)2=(-n+5m)2
3、一現(xiàn)身手
、 (x+y)2 =______________;② (-y-x)2 =_______________;
、 (2x+3)2 =_____________;④ (3a-2)2 =_______________;
、 (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;
、 (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.
〈四〉、[學(xué)生小結(jié)]
你認(rèn)為完全平方公式在應(yīng)用過(guò)程中,需要注意那些問(wèn)題?
(1)公式右邊共有3項(xiàng)。
(2)兩個(gè)平方項(xiàng)符號(hào)永遠(yuǎn)為正。
(3)中間項(xiàng)的符號(hào)由等號(hào)左邊的兩項(xiàng)符號(hào)是否相同決定。
(4)中間項(xiàng)是等號(hào)左邊兩項(xiàng)乘積的2倍。
〈五〉、探險(xiǎn)之旅
(1)(-3a+2b)2=________________________________
。2)(-7-2m) 2 =__________________________________
。3)(-0.5m+2n) 2=_______________________________
。4)(3/5a-1/2b) 2=________________________________
。5)(mn+3) 2=__________________________________
。6)(a2b-0.2) 2=_________________________________
(7)(2xy2-3x2y) 2=_______________________________
。8)(2n3-3m3) 2=________________________________
板書設(shè)計(jì)
完全平方公式
兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;
兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2
完全平方公式教案2
總體說(shuō)明:
完全平方公式則是對(duì)多項(xiàng)式乘法中出現(xiàn)的較為特殊的算式的一種歸納、總結(jié).同時(shí),完全平方公式的推導(dǎo)是初中數(shù)學(xué)中運(yùn)用推理方法進(jìn)行代數(shù)式恒等變形的開端,通過(guò)完全平方公式的學(xué)習(xí)對(duì)簡(jiǎn)化某些整式的運(yùn)算、培養(yǎng)學(xué)生的求簡(jiǎn)意識(shí)有較大好處.而且完全平方公式是后繼學(xué)習(xí)的必備基礎(chǔ),不僅對(duì)學(xué)生提高運(yùn)算速度、準(zhǔn)確率有較大作用,更是以后學(xué)習(xí)分解因式、分式運(yùn)算、解一元二次方程以及二次函數(shù)的恒等變形的重要基礎(chǔ),同時(shí)也具有培養(yǎng)學(xué)生逐漸養(yǎng)成嚴(yán)密的邏輯推理能力的作用.因此學(xué)好完全平方公式對(duì)于代數(shù)知識(shí)的后繼學(xué)習(xí)具有相當(dāng)重要的意義.
本節(jié)是北師大版七年級(jí)數(shù)學(xué)下冊(cè)第一章《整式的運(yùn)算》的第8小節(jié),占兩個(gè)課時(shí),這是第一課時(shí),它主要讓學(xué)生經(jīng)歷探索與推導(dǎo)完全平方公式的過(guò)程,培養(yǎng)學(xué)生的符號(hào)感與推理能力,讓學(xué)生進(jìn)一步體會(huì)數(shù)形結(jié)合的思想在數(shù)學(xué)中的作用.
一、學(xué)生學(xué)情分析
學(xué)生的技能基礎(chǔ):學(xué)生通過(guò)對(duì)本章前幾節(jié)課的學(xué)習(xí),已經(jīng)學(xué)習(xí)了整式的概念、整式的加減、冪的運(yùn)算、整式的乘法、平方差公式,這些基礎(chǔ)知識(shí)的學(xué)習(xí)為本節(jié)課的學(xué)習(xí)奠定了基礎(chǔ).
學(xué)生活動(dòng)經(jīng)驗(yàn)基礎(chǔ):在平方差公式一節(jié)的學(xué)習(xí)中,學(xué)生已經(jīng)經(jīng)歷了探索和應(yīng)用的過(guò)程,獲得了一些數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),培養(yǎng)了一定的符號(hào)感和推理能力;同時(shí)在相關(guān)知識(shí)的學(xué)習(xí)過(guò)程中,學(xué)生經(jīng)歷了很多探究學(xué)習(xí)的過(guò)程,具有了一定的獨(dú)立探究意識(shí)以及與同伴合作交流的能力.
二、教學(xué)目標(biāo)
知識(shí)與技能:
(1)讓學(xué)生會(huì)推導(dǎo)完全平方公式,并能進(jìn)行簡(jiǎn)單的應(yīng)用.
(2)了解完全平方公式的幾何背景.
數(shù)學(xué)能力:
(1)由學(xué)生經(jīng)歷探索完全平方公式的過(guò)程,進(jìn)一步發(fā)展學(xué)生的符號(hào)感與推理能力.
(2)發(fā)展學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想.
情感與態(tài)度:
將學(xué)生頭腦中的前概念暴露出來(lái)進(jìn)行分析,避免形成教學(xué)上的“相異構(gòu)想”.
三、教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):1、完全平方公式的推導(dǎo);
2、完全平方公式的應(yīng)用;
教學(xué)難點(diǎn):1、消除學(xué)生頭腦中的前概念,避免形成“相異構(gòu)想”;
2、完全平方公式結(jié)構(gòu)的認(rèn)知及正確應(yīng)用.
四、教學(xué)設(shè)計(jì)分析
本節(jié)課設(shè)計(jì)了十一個(gè)教學(xué)環(huán)節(jié):學(xué)生練習(xí)、暴露問(wèn)題——驗(yàn)證——推廣到一般情況,形成公式——數(shù)形結(jié)合——進(jìn)一步拓廣——總結(jié)口訣——公式應(yīng)用——學(xué)生反饋——學(xué)生PK——學(xué)生反思——鞏固練習(xí).
第一環(huán)節(jié):學(xué)生練習(xí)、暴露問(wèn)題
活動(dòng)內(nèi)容:計(jì)算:(a+2)2
設(shè)想學(xué)生的做法有以下幾種可能:
①(a+2)2=a2+22
、(a+2)2=a2+2a+22
③正確做法;
針對(duì)這幾種結(jié)果都將a=1代入計(jì)算,得出①②都是錯(cuò)誤的,但③的做法是否一定正確呢?怎么驗(yàn)證?
活動(dòng)目的:在很多學(xué)生的頭腦中,認(rèn)為兩數(shù)和的完全平方與兩數(shù)的平方和等同,即:
(a+2)2=a2+22,如果不將這種定式思維_就很難建立起一個(gè)正確的概念;這一環(huán)節(jié)的目的就是讓學(xué)生的這種錯(cuò)誤或其它錯(cuò)誤充分暴露出來(lái),并讓學(xué)生充分認(rèn)識(shí)到自己原有的定式思維是錯(cuò)誤的,為下一步構(gòu)建新的思維模式埋下伏筆.
第二環(huán)節(jié):驗(yàn)證(a+2)2=a2–4a+22
活動(dòng)內(nèi)容:(a+2)2=(a+2)?(a+2)=a2+2a+2a+22
活動(dòng)目的:在前一環(huán)節(jié)已經(jīng)打破了學(xué)生的原有的思維定式的.基礎(chǔ)上,給學(xué)生建立正確的思維方法,避免形成“相異構(gòu)想”.
第三環(huán)節(jié):推廣到一般情況,形成公式
活動(dòng)內(nèi)容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2
活動(dòng)目的:讓學(xué)生經(jīng)歷從特殊到一般的探究過(guò)程,體驗(yàn)到發(fā)現(xiàn)的快樂(lè).
第四環(huán)節(jié):數(shù)形結(jié)合
活動(dòng)內(nèi)容:設(shè)問(wèn):在多項(xiàng)式的乘法中,很多公式都都可以用幾何圖形進(jìn)行解釋,那么完全平方公式怎樣用幾何圖形解釋呢?
展示動(dòng)畫,用幾何圖形詮釋完全平方公式的幾何意義.
學(xué)生思考:還有沒(méi)有其它的方法來(lái)詮釋完全平方公式?(課后思考)
活動(dòng)目的:讓學(xué)生進(jìn)一步認(rèn)識(shí)到數(shù)與形都不是孤立存在的,數(shù)與形是可以有機(jī)地結(jié)合在一起,從而發(fā)展學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想.
第五環(huán)節(jié):進(jìn)一步拓廣
活動(dòng)內(nèi)容:推導(dǎo)兩數(shù)差的完全平方公式:(a–b)2=a2–2ab+b2
方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2
方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2
活動(dòng)目的:讓學(xué)生經(jīng)歷由兩數(shù)和的完全平方公式拓廣到兩數(shù)差的完全平方公式的過(guò)程,體會(huì)到符號(hào)差異帶來(lái)的結(jié)果差異,由第二種推導(dǎo)方法體會(huì)到兩數(shù)差的完全平方公式是兩數(shù)和的完全平方公式的應(yīng)用.
第六環(huán)節(jié):總結(jié)口訣、認(rèn)識(shí)特征
活動(dòng)內(nèi)容:比較兩個(gè)公式的共同點(diǎn)與不同點(diǎn):(a+b)2=a2+2ab+b2
(a–b)2=a2–2ab+b2
特征:①左邊都是一個(gè)二項(xiàng)式的完全平方,兩者僅有一個(gè)符號(hào)不同;右邊都是二次三項(xiàng)式,其中第一、三項(xiàng)是公式左邊二項(xiàng)式中每一項(xiàng)的平方,中間一項(xiàng)是左邊二項(xiàng)式中兩項(xiàng)乘積的兩倍,兩者也僅一個(gè)符號(hào)不同;
、诠街械腶、b可以是任意一個(gè)代數(shù)式(數(shù)、字母、單項(xiàng)式、多項(xiàng)式)
口訣:首平方,尾平方,首尾相乘的兩倍在中央.
活動(dòng)目的:認(rèn)識(shí)完全平方公式的特征,總結(jié)出完全平方公式的口訣,便于學(xué)生理解與記憶,避免學(xué)生在應(yīng)用該公式中出現(xiàn)錯(cuò)誤.
第七環(huán)節(jié):公式應(yīng)用
活動(dòng)內(nèi)容:例:計(jì)算:①(2x–3)2;②(4x+)2
解:①(2x–3)2=(2x)2–2?(2x)?3+32=4x2–12x+9
②(4x+)2=(4x)2+2?????(4x)()+()2=16x2+2xy+
活動(dòng)目的:在前幾個(gè)環(huán)節(jié)中,學(xué)生對(duì)完全平方公式已經(jīng)有了感性認(rèn)識(shí),通過(guò)本環(huán)節(jié)的講解以及下一環(huán)節(jié)的練習(xí),使學(xué)生逐步經(jīng)歷認(rèn)識(shí)——模仿——再認(rèn)識(shí).從而上升到理性認(rèn)識(shí)的階段.
第八環(huán)節(jié):隨堂練習(xí)
活動(dòng)內(nèi)容:計(jì)算:①;②;③(n+1)2–n2
活動(dòng)目的:通過(guò)學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對(duì)完全平方公式的理解是否到位,完全平方公式的應(yīng)用是否得當(dāng),以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏.
第九環(huán)節(jié):學(xué)生PK
活動(dòng)內(nèi)容:每個(gè)學(xué)生各出五道完全平方公式的計(jì)算題給自己的同桌解答,比一比誰(shuí)的準(zhǔn)確性率高,速度快.
活動(dòng)目的:活躍課堂氣氛,激起學(xué)生的好勝心,進(jìn)一步鞏固學(xué)生對(duì)完全平方公式的理解與應(yīng)用.
第十環(huán)節(jié):學(xué)生反思
活動(dòng)內(nèi)容:通過(guò)今天這堂課的學(xué)習(xí),你有哪些收獲?
收獲1:認(rèn)識(shí)了完全平方公式,并能簡(jiǎn)單應(yīng)用;
收獲2:了解了兩數(shù)和與兩數(shù)差的完全平方公式之間的差異;
收獲3:感受到數(shù)形結(jié)合的數(shù)學(xué)思想在數(shù)學(xué)中的作用.
活動(dòng)目的:通過(guò)對(duì)一堂課的歸納與總結(jié),鞏固學(xué)生對(duì)完全平方公式的認(rèn)識(shí),體會(huì)數(shù)學(xué)思想的精妙.
第十一環(huán)節(jié):布置作業(yè):
課本P43習(xí)題1.13
完全平方公式教案3
教學(xué)目標(biāo):
1.經(jīng)歷探索完全平方公式的過(guò)程,進(jìn)一步發(fā)展學(xué)生的符號(hào)感和推理能力;
2.會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算;
3.了解完全平方公式的幾何背景。教學(xué)重點(diǎn):
1.弄清完全平方公式的來(lái)源及其結(jié)構(gòu)特點(diǎn),能用自己的。語(yǔ)言說(shuō)明公式及其特點(diǎn);
2.會(huì)用完全平方公式進(jìn)行運(yùn)算。教學(xué)難點(diǎn):會(huì)用完全平方公式進(jìn)行運(yùn)算教學(xué)過(guò)程:
一、探索練習(xí):
一塊邊長(zhǎng)為a米的正方形實(shí)驗(yàn)田,因需要將其邊長(zhǎng)增加b米,形成四塊實(shí)驗(yàn)田,以種植不同的新品種。(圖略)
用不同的`形式表示實(shí)驗(yàn)田的總面積,并進(jìn)行比較你發(fā)現(xiàn)了什么?
觀察得到的式子,想一想:
(1)(a+b)2等于什么?你能不能用多項(xiàng)式乘法法則說(shuō)明理由呢?
(2)(a-b)2等于什么?小穎寫出了如下的算式:
(a-b)2=[a+(b)]2.
她是怎么想的?你能繼續(xù)做下去嗎?
由此歸納出完全平方公式:
(a+b)2=a2+2ab+b2
(a-b)2=a22ab+b2
教師在此時(shí)應(yīng)該引導(dǎo)觀察完全平方公式的特點(diǎn),并用自己的言語(yǔ)表達(dá)出來(lái)。
例:(利用完全平方公式計(jì)算)
(1)(2x-3)2
解:(2x-3)2
=(2x)2-2(2x)3+32
=4x12x+9
二、鞏固練習(xí):
1.下列各式中哪些可以運(yùn)用完全平方公式計(jì)算xxxxxxxxx
(1) ;(2) ;
(3) ;(4) .
2.計(jì)算下列各式:
(1) ;(2) ;(3) ;
(4) ;(5) ;
(6) .
4.填空:
(1) xxxxxxxxx_;(2) ;
(3) ;三、提高練習(xí):
1.求的值,其中
2.若
小結(jié):熟記完全平方公式,會(huì)用完全平方公式進(jìn)行運(yùn)算。作業(yè):課本P36習(xí)題1.13:1.2.教學(xué)后記:學(xué)生基本上能套用平方差公式進(jìn)行運(yùn)算,但是也有出現(xiàn)以下錯(cuò)誤:(1)(a+b)2=a2+b2 (2)(+a)(2-a)=6-a2
對(duì)公式的真正理解有待加強(qiáng)。
完全平方公式教案4
教學(xué)目標(biāo):
1、經(jīng)歷探索完全平方公式的過(guò)程,并從完全平方公式的推導(dǎo)過(guò)程中,培養(yǎng)學(xué)生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展邏輯推理能力和有條理的表達(dá)能力。
2、體會(huì)公式的發(fā)現(xiàn)和推導(dǎo)過(guò)程,理解公式的本質(zhì),從不同的層次上理解完全平方公式,并會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。
3、了解完全平方公式的幾何背景,培養(yǎng)學(xué)生的數(shù)形結(jié)合意識(shí)。
4、在學(xué)習(xí)中使學(xué)生體會(huì)學(xué)習(xí)數(shù)學(xué)的樂(lè)趣,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的信心,感愛數(shù)學(xué)的內(nèi)在美。
教學(xué)重點(diǎn):
1、弄清完全平方公式的來(lái)源及其結(jié)構(gòu)特點(diǎn),用自己的語(yǔ)言說(shuō)明公式及其特點(diǎn);
2、會(huì)用完全平方公式進(jìn)行運(yùn)算。
教學(xué)難點(diǎn):
會(huì)用完全平方公式進(jìn)行運(yùn)算
教學(xué)方法:
探索討論、歸納總結(jié)。
教學(xué)過(guò)程:
一、回顧與思考
活動(dòng)內(nèi)容:復(fù)習(xí)已學(xué)過(guò)的平方差公式
1、平方差公式:(a+b)(a—b)=a2—b2;
公式的結(jié)構(gòu)特點(diǎn):左邊是兩個(gè)二項(xiàng)式的乘積,即兩數(shù)和與這兩數(shù)差的積。
右邊是兩數(shù)的平方差。
2、應(yīng)用平方差公式的注意事項(xiàng):弄清在什么情況下才能使用平方差公式。
二、情境引入
活動(dòng)內(nèi)容:提出問(wèn)題:
一塊邊長(zhǎng)為a米的正方形實(shí)驗(yàn)田,由于效益比較高,所以要擴(kuò)大農(nóng)田,將其邊長(zhǎng)增加b米,形成四塊實(shí)驗(yàn)田,以種植不同的新品種(如圖)。
用不同的'形式表示實(shí)驗(yàn)田的總面積,并進(jìn)行比較。
三、初識(shí)完全平方公式
活動(dòng)內(nèi)容:
1、通過(guò)多項(xiàng)式的乘法法則來(lái)驗(yàn)證(a+b)2=a2+2ab+b2的正確性。并利用兩數(shù)和的完全平方公式推導(dǎo)出兩數(shù)差的完全平方公式:(a—b)2=a2—2ab+b2。
2、引導(dǎo)學(xué)生利用幾何圖形來(lái)驗(yàn)證兩數(shù)差的完全平方公式。
3、分析完全平方公式的結(jié)構(gòu)特點(diǎn),并用語(yǔ)言來(lái)描述完全平方公式。
結(jié)構(gòu)特點(diǎn):左邊是二項(xiàng)式(兩數(shù)和(差))的平方;
右邊是兩數(shù)的平方和加上(減去)這兩數(shù)乘積的兩倍。
語(yǔ)言描述:兩數(shù)和(或差)的平方,等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的兩倍。
四、再識(shí)完全平方公式
活動(dòng)內(nèi)容:例1用完全平方公式計(jì)算:
。1)(2x?3)2(2)(4x+5y)2(3)(mn?a)2(4)(—1—2x)2(5)(—2x+1)2
2、總結(jié)口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。
五、鞏固練習(xí):
1、下列各式中哪些可以運(yùn)用完全平方公式計(jì)算。
1.6完全平方公式:
一、學(xué)習(xí)目標(biāo)
1、會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。
2、了解完全平方公式的幾何背景
二、學(xué)習(xí)重點(diǎn):會(huì)用完全平方公式進(jìn)行運(yùn)算。
三、學(xué)習(xí)難點(diǎn):理解完全平方公式的結(jié)構(gòu)特征并能靈活應(yīng)用公式進(jìn)行計(jì)算。
四、學(xué)習(xí)設(shè)計(jì)
。ㄒ唬╊A(yù)習(xí)準(zhǔn)備
。1)預(yù)習(xí)書p23—26
(2)思考:和的平方等于平方的和嗎?
1.6《完全平方公式》習(xí)題
1、已知實(shí)數(shù)x、y都大于2,試比較這兩個(gè)數(shù)的積與這兩個(gè)數(shù)的和的大小,并說(shuō)明理由。
2、已知(a+b)2=24,(a—b)2=20,求:
。1)ab的值是多少?
。2)a2+b2的值是多少?
3、已知2(x+y)=—6,xy=1,求代數(shù)式(x+2)—(3xy—y)的值。
《1.6完全平方公式》課時(shí)練習(xí)
1、(5—x2)2等于;
答案:25—10x2+x4
解析:解答:(5—x2)2=25—10x2+x4
分析:根據(jù)完全平方公式與冪的乘方法則可完成此題。
2、(x—2y)2等于;
答案:x2—8xy+4y2
解析:解答:(x—2y)2=x2—8xy+4y2
分析:根據(jù)完全平方公式與積的乘方法則可完成此題。
3、(3a—4b)2等于;
答案:9a2—24ab+16b2
解析:解答:(3a—4b)2=9a2—24ab+16b2
分析:根據(jù)完全平方公式可完成此題。
完全平方公式教案5
學(xué)生活動(dòng):采取比賽的方式把學(xué)生分成四組,每組完成一題,看哪一組完成得快而且準(zhǔn)確,每組各派一個(gè)學(xué)生板演本組題目.
【教法說(shuō)明】這樣做的.目的是訓(xùn)練學(xué)生的快速反應(yīng)能力及綜合運(yùn)用知識(shí)的能力,同時(shí)也激發(fā)學(xué)生的學(xué)習(xí)興趣,活躍課堂氣氛.
。ㄋ模┛偨Y(jié)、擴(kuò)展
這節(jié)課我們學(xué)習(xí)了乘法公式中的完全平方公式.
引導(dǎo)學(xué)生舉例說(shuō)明公式的結(jié)構(gòu)特征,公式中字母含義和運(yùn)用公式時(shí)應(yīng)該注意的問(wèn)題.
八、布置作業(yè)
P133 1,2.(3)(4).
參考答案
略.
完全平方公式教案6
教學(xué)目標(biāo)
1、使學(xué)生理解完全平方公式的意義,弄清完全平方公式的形式和特點(diǎn);使學(xué)生知道把完全平方公式反過(guò)來(lái)就可以得到相應(yīng)的因式分解。
2、掌握運(yùn)用完全平方公式分解因式的方法,能正確運(yùn)用完全平方公式把多項(xiàng)式分解因式(直接用公式不超過(guò)兩次)
教學(xué)方法:對(duì)比發(fā)現(xiàn)法課型新授課教具投影儀
教師活動(dòng):學(xué)生活動(dòng)
復(fù)習(xí)鞏固:上節(jié)課我們學(xué)習(xí)了運(yùn)用平方差公式分解因式,請(qǐng)同學(xué)們先閱讀課本87—88頁(yè),看看你能有什么發(fā)現(xiàn)?
新課講解:
(投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項(xiàng)式因式分解。例如:
a2+8a+16=a2+2×4a+42=(a+4)2
a2-8a+16=a2-2×4a+42=(a-4)2
(要強(qiáng)調(diào)注意符號(hào))
首先我們來(lái)試一試:(投影:牛刀小試)
1.把下列各式分解因式:
(1)x2+8x+16;;(2)25a4+10a2+1
(3)(m+n)2-4(m+n)+4
(教師強(qiáng)調(diào)步驟的重要性,注意發(fā)現(xiàn)學(xué)生易錯(cuò)點(diǎn),及時(shí)糾正)
2.把81x4-72x2y2+16y4分解因式
(本題用了兩次乘法公式,難度稍大,教師要鼓勵(lì)學(xué)生大膽嘗試,敢于創(chuàng)新)
將乘法公式反過(guò)來(lái)就得到多項(xiàng)式因式分解的`公式。運(yùn)用這些公式把一個(gè)多項(xiàng)式分解因式的方法叫做運(yùn)用公式法。
練習(xí):第88頁(yè)練一練第1、2題
完全平方公式教案7
學(xué)習(xí)目標(biāo):
1、經(jīng)歷探索完全平方公式的過(guò)程,發(fā)展學(xué)生觀察、交流、歸納、猜測(cè)、驗(yàn)證等能力。
2、會(huì)推導(dǎo)完全平方公式,了解公式的幾何背景,會(huì)用公式計(jì)算。
3、數(shù)形結(jié)合的數(shù)學(xué)思想和方法。
學(xué)習(xí)重點(diǎn):會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。
學(xué)習(xí)難點(diǎn):掌握完全平方公式的結(jié)構(gòu)特征,理解公式中a.b的廣泛含義。
學(xué)習(xí)過(guò)程:
一、學(xué)習(xí)準(zhǔn)備
1、利用多項(xiàng)式乘以多項(xiàng)式計(jì)算:(a+b)2 (a-b)2
2、這兩個(gè)特殊形式的多項(xiàng)式乘法結(jié)果稱為完全平方公式。
嘗試用自己的語(yǔ)言敘述完全平方公式:
3、完全平方公式的'幾何意義:閱讀課本64頁(yè),完成填空。
4、完全平方公式的結(jié)構(gòu)特征:
(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
左邊是 形式,右邊有三項(xiàng),其中兩項(xiàng)是 形式,另一項(xiàng)是
注意:公式中字母的含義廣泛,可以是 ,只要題目符合公式的結(jié)構(gòu)特征,就可以運(yùn)用這一公式,可用符號(hào)表示為:(□±△)=□2±2□△+△2
5、兩個(gè)完全平方公式的轉(zhuǎn)化:
(a-b)2= 2=( )2+2( )+( )2=
二、合作探究
1、利用乘法公式計(jì)算:
(1) (3a+2b)2 (2) (-4x2-1)2
分析:要分清題目中哪個(gè)式子相當(dāng)于公式中的a ,哪個(gè)式子相當(dāng)于公式中的b
2、利用乘法公式計(jì)算:
(1) 992 (2) ( )2
分析:要利用完全平方公式,需具備完全平方公式的結(jié)構(gòu),所以992可以轉(zhuǎn)化( )2,( )2可以轉(zhuǎn)化為( )2
3、利用完全平方公式計(jì)算:
(1) (a+b+c)2 (2) (a-b)3
三、學(xué)習(xí)
對(duì)照學(xué)習(xí)目標(biāo),通過(guò)預(yù)習(xí),你覺(jué)得自己有哪些方面的收獲?又存在哪些方面的疑惑?
四、自我測(cè)試
1、下列計(jì)算是否正確,若不正確,請(qǐng)訂正;
(1) (-1+3a)2=9a2-6a+1
(2) (3x2- )2=9x4-
(3) (xy+4)2=x2y2+16
(4) (a2b-2)2=a2b2-2a2b+4
2、利用乘法公式計(jì)算:
(1) (3x+1)2 (2) (a-3b)2
(3) (-2x+ )2 (4) (-3m-4n)2
3、利用乘法公式計(jì)算:
(1) 9992 (2) (100.5)2
4、先化簡(jiǎn),再求值;
( m-3n)2-( m+3n)2+2,其中m=2,n=3
五、思維拓展
1、如果x2-kx+81是一個(gè)完全平方公式,則k的值是
2、多項(xiàng)式4x2+1加上一個(gè)單項(xiàng)式后,使它能成為一個(gè)整式的完全平方,那么加上的單項(xiàng)式可以是
3、已知(x+y)2=9, (x-y)2=5 ,求xy的值
4、x+y=4 ,x-y=10 ,那么xy=
5、已知x- =4,則x2+ =
完全平方公式教案8
運(yùn)用完全平方公式計(jì)算:
(1) (2) (3)
。4) (5) (6)
(7) (8) (9)
。╨0)
學(xué)生活動(dòng):學(xué)生在練習(xí)本上完成,然后同學(xué)互評(píng),教師抽看結(jié)果,練習(xí)中存在的共性問(wèn)題要集中解決.
5.變式訓(xùn)練,培養(yǎng)能力
完全平方公式教案9
一、教材分析
1、教材的地位和作用
本節(jié)教材是初中數(shù)學(xué)七年級(jí)下冊(cè)第一章第八節(jié)的內(nèi)容,是初中數(shù)學(xué)的重要內(nèi)容之一。一方面,這是在學(xué)習(xí)了整式的加、減、乘、除及平方差公式的基礎(chǔ)上,對(duì)多項(xiàng)式乘法的進(jìn)一步深入和拓展;另一方面,又為學(xué)習(xí)《因式分解》《配方法》等知識(shí)奠定了基礎(chǔ),是進(jìn)一步研究《一元二次方程》《二次函數(shù)》的工具性內(nèi)容。鑒于這種認(rèn)識(shí),我認(rèn)為,本節(jié)課不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。
2、學(xué)情分析
從心理特征來(lái)說(shuō),初中階段的學(xué)生邏輯思維能力有待培養(yǎng),從經(jīng)驗(yàn)型逐步向理論型發(fā)展,觀察能力,記憶能力和想象能力也隨著迅速發(fā)展。但同時(shí),這一階段的學(xué)生好動(dòng),注意力易分散,愛發(fā)表見解,希望得到老師的表?yè)P(yáng),所以在教學(xué)中應(yīng)抓住這些特點(diǎn),一方面運(yùn)用直觀生動(dòng)的形象,引發(fā)學(xué)生的興趣,使他們的注意力始終集中在課堂上;另一方面,要?jiǎng)?chuàng)造條件和機(jī)會(huì),讓學(xué)生發(fā)表見解,發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性。
從認(rèn)知狀況來(lái)說(shuō),學(xué)生在此之前已經(jīng)學(xué)習(xí)了多項(xiàng)式乘法法則、平方差公式的探索過(guò)程,對(duì)“完全平方公式”已經(jīng)有了初步的認(rèn)識(shí),為順利完成本節(jié)課的教學(xué)任務(wù)打下了基礎(chǔ),但對(duì)于“完全平方公式”的理解,(由于其抽象程度較高,)學(xué)生可能會(huì)產(chǎn)生一定的困難,所以教學(xué)中應(yīng)予以簡(jiǎn)單明白,深入淺出的分析。
3、教學(xué)重難點(diǎn)
根據(jù)以上對(duì)教材的地位和作用,以及學(xué)情分析,結(jié)合新課標(biāo)對(duì)本節(jié)課的要求,我將本節(jié)課的重點(diǎn)確定為:
對(duì)公式(a+b) 2=a2+2ab+b2的理解,包括它的推導(dǎo)過(guò)程、結(jié)構(gòu)特點(diǎn)、語(yǔ)言表述(學(xué)生自己的語(yǔ)言)、幾何解釋。
難點(diǎn)確定為:從廣泛意義上理解完全平方公式的符號(hào)含義,培養(yǎng)學(xué)生有條理的.思考和語(yǔ)言表達(dá)能力。
二、教學(xué)目標(biāo)分析
新課標(biāo)指出,教學(xué)目標(biāo)應(yīng)包括知識(shí)與技能目標(biāo),過(guò)程與方法目標(biāo),情感與態(tài)度目標(biāo)這三個(gè)方面,而這三維目標(biāo)又應(yīng)是緊密聯(lián)系的一個(gè)有機(jī)整體,學(xué)生學(xué)會(huì)知識(shí)與技能的過(guò)程同時(shí)成為學(xué)會(huì)學(xué)習(xí),形成正確價(jià)值觀的過(guò)程,這告訴我們,在教學(xué)中應(yīng)以知識(shí)與技能為主線,滲透情感態(tài)度價(jià)值觀,并把前面兩者充分體現(xiàn)在過(guò)程與方法中。借此,我將三維目標(biāo)進(jìn)行整合,確定本節(jié)課的教學(xué)目標(biāo)為:
1.經(jīng)歷探索完全平方公式的過(guò)程,進(jìn)一步發(fā)展符號(hào)感和推理能力。會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的運(yùn)算。
2.在探索討論、歸結(jié)總結(jié)中,培養(yǎng)學(xué)生語(yǔ)言表達(dá)能力、邏輯思維能力。
3.通過(guò)主動(dòng)探究,合作交流,感受探索的樂(lè)趣和成功的體驗(yàn),體會(huì)數(shù)學(xué)的合理性和嚴(yán)謹(jǐn)性,使學(xué)生養(yǎng)成積極思考,獨(dú)立思考的好習(xí)慣,并且同時(shí)培養(yǎng)學(xué)生積極參與對(duì)數(shù)學(xué)問(wèn)題的討論并敢于表達(dá)自己的觀點(diǎn)。
三、教學(xué)方法分析
現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過(guò)程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、言道者,教學(xué)的一切活動(dòng)都必須以強(qiáng)調(diào)學(xué)生的主動(dòng)性、積極性為出發(fā)點(diǎn)。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點(diǎn)和學(xué)生的年齡特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,以問(wèn)題的提出、問(wèn)題的解決為主線,始終在學(xué)生知識(shí)的“最近發(fā)展區(qū)”設(shè)置問(wèn)題,倡導(dǎo)學(xué)生主動(dòng)參與教學(xué)實(shí)踐活動(dòng),以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問(wèn)題,在引導(dǎo)分析時(shí),給學(xué)生流出足夠的思考時(shí)間和空間,讓學(xué)生去聯(lián)想、探索,從真正意義上完成對(duì)知識(shí)的自我建構(gòu)。
另外,在教學(xué)過(guò)程中,我采用多媒體輔助教學(xué),以直觀呈現(xiàn)教學(xué)素材,從而更好地激發(fā)學(xué)生的學(xué)習(xí)興趣,增大教學(xué)容量,提高教學(xué)效率。
四、教學(xué)過(guò)程分析
新課標(biāo)指出,數(shù)學(xué)教學(xué)過(guò)程是教師引導(dǎo)學(xué)生進(jìn)行學(xué)習(xí)活動(dòng)的過(guò)程,是教師和學(xué)生間互動(dòng)的過(guò)程,是師生共同發(fā)展的過(guò)程。為有序、有效地進(jìn)行教學(xué),本節(jié)課我主要安排以下教學(xué)環(huán)節(jié):
(1)復(fù)習(xí)舊知,溫故知新
設(shè)計(jì)意圖:建構(gòu)注意主張教學(xué)應(yīng)從學(xué)生已有的知識(shí)體系出發(fā),是本節(jié)課深入研究的認(rèn)知基礎(chǔ),這樣設(shè)計(jì)有利于引導(dǎo)學(xué)生順利地進(jìn)入學(xué)習(xí)情境。
(2)創(chuàng)設(shè)情境,提出問(wèn)題
設(shè)計(jì)意圖:以問(wèn)題串的形式創(chuàng)設(shè)情境,引起學(xué)生的認(rèn)知沖突,使學(xué)生對(duì)舊知識(shí)產(chǎn)生設(shè)疑,從而激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲望‘
通過(guò)情境創(chuàng)設(shè),學(xué)生已激發(fā)了強(qiáng)烈的求知欲望,產(chǎn)生了強(qiáng)勁的學(xué)習(xí)動(dòng)力,此時(shí)我把學(xué)生帶入下一環(huán)節(jié)———
(3)發(fā)現(xiàn)問(wèn)題,探求新知
設(shè)計(jì)意圖:現(xiàn)代數(shù)學(xué)教學(xué)論指出,的教學(xué)必須在學(xué)生自主探索,經(jīng)驗(yàn)歸納的基礎(chǔ)上獲得,教學(xué)中必須展現(xiàn)思維的過(guò)程性,在這里,通過(guò)觀察分析、獨(dú)立思考、小組交流等活動(dòng),引導(dǎo)學(xué)生歸納。
(4)分析思考,加深理解
設(shè)計(jì)意圖:數(shù)學(xué)教學(xué)論指出,數(shù)學(xué)概念(定理等)要明確其內(nèi)涵和外延(條件、結(jié)論、應(yīng)用范圍等),通過(guò)對(duì)定義的幾個(gè)重要方面的闡述,使學(xué)生的認(rèn)知結(jié)構(gòu)得到優(yōu)化,知識(shí)體系得到完善,使學(xué)生的數(shù)學(xué)理解又一次突破思維的難點(diǎn)。
通過(guò)前面的學(xué)習(xí),學(xué)生已基本把握了本節(jié)課所要學(xué)習(xí)的內(nèi)容,此時(shí),他們急于尋找一塊用武之地,以展示自我,體驗(yàn)成功,于是我把學(xué)生導(dǎo)入下一環(huán)節(jié)。
(5)強(qiáng)化訓(xùn)練,鞏固雙基
設(shè)計(jì)意圖:幾道例題及練習(xí)題由淺入深、由易到難、各有側(cè)重,其中例1……例2……,體現(xiàn)新課標(biāo)提出的讓不同的學(xué)生在數(shù)學(xué)上得到不同發(fā)展的教學(xué)理念。這一環(huán)節(jié)總的設(shè)計(jì)意圖是反饋教學(xué),內(nèi)化知識(shí)。
(6) 小結(jié)歸納,拓展深化
我的理解是,小結(jié)歸納不應(yīng)該僅僅是知識(shí)的簡(jiǎn)單羅列,而應(yīng)該是優(yōu)化認(rèn)知結(jié)構(gòu),完善知識(shí)體系的一種有效手段,為充分發(fā)揮學(xué)生的主題作用,從學(xué)習(xí)的知識(shí)、方法、體驗(yàn)等幾個(gè)方面進(jìn)行歸納,我設(shè)計(jì)了這么三個(gè)問(wèn)題:
、偻ㄟ^(guò)本節(jié)課的學(xué)習(xí),你學(xué)會(huì)了哪些知識(shí);
、谕ㄟ^(guò)本節(jié)課的學(xué)習(xí),你最大的體驗(yàn)是什么;
③通過(guò)本節(jié)課的學(xué)習(xí),你掌握了哪些學(xué)習(xí)數(shù)學(xué)的方法?
(7)布置作業(yè),提高升華
以作業(yè)的鞏固性和發(fā)展性為出發(fā)點(diǎn),我設(shè)計(jì)了必做題和選做題,必做題是對(duì)本節(jié)課內(nèi)容的一個(gè)反饋,選做題是對(duì)本節(jié)課知識(shí)的一個(gè)延伸?偟脑O(shè)計(jì)意圖是反饋教學(xué),鞏固提高。
以上幾個(gè)環(huán)節(jié)環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學(xué)生的交流互動(dòng),在教師的整體調(diào)控下,學(xué)生通過(guò)動(dòng)腦思考、層層遞進(jìn),對(duì)知識(shí)的理解逐步深入,使課堂效益達(dá)到最佳狀態(tài)。
完全平方公式教案10
教學(xué)目標(biāo)
1、使學(xué)生會(huì)分析和判斷一個(gè)多項(xiàng)式是否為完全平方式,初步掌握運(yùn)用完全平方式把多項(xiàng)式分解因式的方法;
2、理解完全平方式的意義和特點(diǎn),培養(yǎng)學(xué)生的判斷能力。
3、進(jìn)一步培養(yǎng)學(xué)生全面地觀察問(wèn)題、分析問(wèn)題和逆向思維的能力。
4、通過(guò)運(yùn)用公式法分解因式的教學(xué),使學(xué)生進(jìn)一步體會(huì)“把一個(gè)代數(shù)式看作一個(gè)字母”的換元思想。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):運(yùn)用完全平方式分解因式。
難點(diǎn):靈活運(yùn)用完全平方公式公解因式。
教學(xué)過(guò)程設(shè)計(jì)
一、復(fù)習(xí)
1、問(wèn):什么叫把一個(gè)多項(xiàng)式因式分解?我們已經(jīng)學(xué)習(xí)了哪些因式分解的方法?
答:把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積形式,叫做把這個(gè)多項(xiàng)式因式分解。我們學(xué)過(guò)的因式分解的方法有提取公因式法及運(yùn)用平方差公式法。
2、把下列各式分解因式:
(1)ax4-ax2 (2)16m4-n4。
解(1) ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)
。2)16m4-n4=(4m2)2-(n2)2
=(4m2+n2)(4m2-n2)
=(4m2+n2)(2m+n)(2m-n)。
問(wèn):我們學(xué)過(guò)的乘法公式除了平方差公式之外,還有哪些公式?
答:有完全平方公式。
請(qǐng)寫出完全平方公式。
完全平方公式是:
(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2。
這節(jié)課我們就來(lái)討論如何運(yùn)用完全平方公式把多項(xiàng)式因式分解。
二、新課
和討論運(yùn)用平方差公式把多項(xiàng)式因式分解的思路一樣,把完全平方公式反過(guò)來(lái),就得到
a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2。
這就是說(shuō),兩個(gè)數(shù)的平方和,加上(或者減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或者差)的平方。式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的兩個(gè)公式就是完全平方公式。運(yùn)用這兩個(gè)式子,可以把形式是完全平方式的多項(xiàng)式分解因式。
問(wèn):具備什么特征的多項(xiàng)是完全平方式?
答:一個(gè)多項(xiàng)式如果是由三部分組成,其中的兩部分是兩個(gè)式子(或數(shù))的平方,并且這兩部分的符號(hào)都是正號(hào),第三部分是上面兩個(gè)式子(或數(shù))的乘積的二倍,符號(hào)可正可負(fù),像這樣的式子就是完全平方式。
問(wèn):下列多項(xiàng)式是否為完全平方式?為什么?
(1)x2+6x+9;(2)x2+xy+y2;
(3)25x4-10x2+1;(4)16a2+1。
答:(1)式是完全平方式。因?yàn)閤2與9分別是x的平方與3的平方,6x=2·x·3,所以
x2+6x+9=(x+3) 。
。2)不是完全平方式。因?yàn)榈谌糠直仨毷?xy。
。3)是完全平方式。25x =(5x),1=1,10x =2·5x ·1,所以
25x-10x +1=(5x-1) 。
(4)不是完全平方式。因?yàn)槿钡谌糠帧?/p>
請(qǐng)同學(xué)們用箭頭表示完全平方公式中的a,b與多項(xiàng)式9x2+6xy+y2中的對(duì)應(yīng)項(xiàng),其中a=?b=?2ab=?
答:完全平方公式為:
其中a=3x,b=y,2ab=2·(3x)·y。
例1把25x4+10x2+1分解因式。
分析:這個(gè)多項(xiàng)式是由三部分組成,第一項(xiàng)“25x4”是(5x2)的平方,第三項(xiàng)“1”是1的平方,第二項(xiàng)“10x2”是5x2與1的積的2倍。所以多項(xiàng)式25x4+10x2+1是完全平方式,可以運(yùn)用完全平方公式分解因式。
解25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2。
例2把1-m+分解因式。
問(wèn):請(qǐng)同學(xué)分析這個(gè)多項(xiàng)式的`特點(diǎn),是否可以用完全平方公式分解因式?有幾種解法?
答:這個(gè)多項(xiàng)式由三部分組成,第一項(xiàng)“1”是1的平方,第三項(xiàng)“ ”是的平方,第二項(xiàng)“-m”是1與m/4的積的2倍的相反數(shù),因此這個(gè)多項(xiàng)式是完全平方式,可以用完全平方公式分解因式。
解法1 1-m+ =1-2·1· +()2=(1-)2。
解法2先提出,則
1-m+ = (16-8m+m2)
= (42-2·4·m+m2)
= (4-m)2。
三、課堂練習(xí)(投影)
1、填空:
(1)x2-10x+()2=()2;
(2)9x2+()+4y2=()2;
(3)1-()+m2/9=()2。
2、下列各多項(xiàng)式是不是完全平方式?如果是,可以分解成什么式子?如果不是,請(qǐng)把多
項(xiàng)式改變?yōu)橥耆椒绞健?/p>
(1)x2-2x+4;(2)9x2+4x+1;(3)a2-4ab+4b2;
(4)9m2+12m+4;(5)1-a+a2/4。
3、把下列各式分解因式:
(1)a2-24a+144;(2)4a2b2+4ab+1;
(3)19x2+2xy+9y2;(4)14a2-ab+b2。
答案:
1、(1)25,(x-5) 2;(2)12xy,(3x+2y) 2;(3)2m/3,(1-m3)2。
2、(1)不是完全平方式,如果把第二項(xiàng)的“-2x”改為“-4x”,原式就變?yōu)閤2-4x+4,它是完全平方式;或把第三項(xiàng)的“4”改為1,原式就變?yōu)閤2-2x+1,它是完全平方式。
。2)不是完全平方式,如果把第二項(xiàng)“4x”改為“6x”,原式變?yōu)?x2+6x+1,它是完全平方式。
(3)是完全平方式,a2-4ab+4b2=(a-2b)2。
。4)是完全平方式,9m2+12m+4=(3m+2) 2。
(5)是完全平方式,1-a+a2/4=(1-a2)2。
3、(1)(a-12) 2;(2)(2ab+1) 2;
。3)(13x+3y) 2;(4)(12a-b)2。
四、小結(jié)
運(yùn)用完全平方公式把一個(gè)多項(xiàng)式分解因式的主要思路與方法是:
1、首先要觀察、分析和判斷所給出的多項(xiàng)式是否為一個(gè)完全平方式,如果這個(gè)多項(xiàng)式是一個(gè)完全平方式,再運(yùn)用完全平方公式把它進(jìn)行因式分解。有時(shí)需要先把多項(xiàng)式經(jīng)過(guò)適當(dāng)變形,得到一個(gè)完全平方式,然后再把它因式分解。
2、在選用完全平方公式時(shí),關(guān)鍵是看多項(xiàng)式中的第二項(xiàng)的符號(hào),如果是正號(hào),則用公式a2+2ab+b2=(a+b) 2;如果是負(fù)號(hào),則用公式a2-2ab+b2=(a-b) 2。
五、作業(yè)
把下列各式分解因式:
1、(1)a2+8a+16;(2)1-4t+4t2;
(3)m2-14m+49;(4)y2+y+1/4。
2、(1)25m2-80m+64;(2)4a2+36a+81;
(3)4p2-20pq+25q2;(4)16-8xy+x2y2;
(5)a2b2-4ab+4;(6)25a4-40a2b2+16b4。
3、(1)m2n-2mn+1;(2)7am+1-14am+7am-1;
4、(1) x-4x;(2)a5+a4+ a3。
答案:
1、(1)(a+4)2;(2)(1-2t)2;
。3)(m-7) 2;(4)(y+12)2。
2、(1)(5m-8) 2;(2)(2a+9) 2;
。3)(2p-5q) 2;(4)(4-xy) 2;
。5)(ab-2) 2;(6)(5a2-4b2) 2。
3、(1)(mn-1) 2;(2)7am-1(a-1) 2。
4、(1) x(x+4)(x-4);(2)14a3 (2a+1) 2。
完全平方公式教案11
學(xué)生活動(dòng):學(xué)生分組討論,選代表解答.
練習(xí)三
。1)有甲、乙、丙、丁四名同學(xué),共同計(jì)算,以下是他們的計(jì)算過(guò)程,請(qǐng)判斷他們的計(jì)算是否正確,不正確的請(qǐng)指出錯(cuò)在哪里.
甲的計(jì)算過(guò)程是:原式
乙的計(jì)算過(guò)程是:原式
丙的'計(jì)算過(guò)程是:原式
丁的計(jì)算過(guò)程是:原式
。2)想一想,與相等嗎?為什么?
與相等嗎?為什么?
學(xué)生活動(dòng):觀察、思考后,回答問(wèn)題.
【教法說(shuō)明】練習(xí)二是一組數(shù)字計(jì)算題,使學(xué)生體會(huì)到公式的用途,也可以激發(fā)學(xué)生學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,同時(shí)也起到加深理解公式的作用.練習(xí)三第(l)題實(shí)際是課本例4,此題是與平方差公式的綜合運(yùn)用,難度較大.通過(guò)給出解題步驟,讓學(xué)生進(jìn)行判斷,使難度降低,學(xué)生易于理解,教師要注意引導(dǎo)學(xué)生分析這類題的結(jié)構(gòu)特征,掌握解題方法.通過(guò)完成第(2)題使學(xué)生進(jìn)一步理解與之間的相等關(guān)系,同時(shí)加深理解代數(shù)中“a”具有的廣泛意義.
練習(xí)四
運(yùn)用乘法公式計(jì)算:
完全平方公式教案12
課題教案:完全平方公式
學(xué)科:數(shù)學(xué)
年級(jí):七年級(jí)
1內(nèi)容本節(jié)課的主題:通過(guò)一系列的探究活動(dòng),引導(dǎo)學(xué)生從計(jì)算結(jié)果中總結(jié)出完全平方公式的兩種形式。
1.1以教材作為出發(fā)點(diǎn),依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會(huì)、參與科學(xué)探究過(guò)程。使學(xué)生通過(guò)收集和處理信息、表達(dá)與交流等活動(dòng),獲得知識(shí)、技能、方法、態(tài)度特別是創(chuàng)新精神和實(shí)踐能力等方面的發(fā)展。
1.2用標(biāo)準(zhǔn)的數(shù)學(xué)語(yǔ)言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)生的數(shù)學(xué)思維。
2教學(xué)目標(biāo)
2.1知識(shí)目標(biāo):會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算;了解(a+b)2=a2+2ab+b2的幾何背景。
2.2技能目標(biāo):經(jīng)歷由一般的多項(xiàng)式乘法向乘法公式過(guò)渡的探究過(guò)程,進(jìn)一步培養(yǎng)學(xué)生歸納總結(jié)的能力,并給公式的應(yīng)用打下堅(jiān)實(shí)的基礎(chǔ)。
2.3情感與態(tài)度目標(biāo):通過(guò)觀察、實(shí)驗(yàn)、歸納、類比、推斷獲得數(shù)學(xué)猜想,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索性和創(chuàng)造性,感受證明的必要性、證明過(guò)程的嚴(yán)謹(jǐn)性以及結(jié)論的確定性。
3教學(xué)重點(diǎn)完全平方公式的準(zhǔn)確應(yīng)用。
4教學(xué)難點(diǎn)掌握公式中字母表達(dá)式的意義及靈活運(yùn)用公式進(jìn)行計(jì)算。
5教育理念和教學(xué)方式
5.1教學(xué)是師生交往、積極互動(dòng)、共同發(fā)展的過(guò)程。教師是學(xué)生學(xué)習(xí)的組織者、促進(jìn)者、合作者:本節(jié)的教學(xué)過(guò)程,要為學(xué)生的動(dòng)手實(shí)踐,自主探索與合作交流提供機(jī)會(huì),搭建平臺(tái);尊重和自己意見不一致的學(xué)生,贊賞每一位學(xué)生的結(jié)論和對(duì)自己的超越,尊重學(xué)生的個(gè)人感受和獨(dú)特見解;幫助學(xué)生發(fā)現(xiàn)他們所學(xué)東西的個(gè)人意義和社會(huì)價(jià)值,通過(guò)恰當(dāng)?shù)慕虒W(xué)方式引導(dǎo)學(xué)生學(xué)會(huì)自我調(diào)適,自我選擇。
學(xué)生是學(xué)習(xí)的主人,在教師指導(dǎo)下主動(dòng)的、富有個(gè)性的學(xué)習(xí),用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。
5.2采用“問(wèn)題情景—探究交流—得出結(jié)論—強(qiáng)化訓(xùn)練”的模式展開教學(xué)。充分利用動(dòng)手實(shí)踐的機(jī)會(huì),盡可能增加教學(xué)過(guò)程的趣味性,強(qiáng)調(diào)學(xué)生的動(dòng)手操作和主動(dòng)參與,通過(guò)豐富多彩的集體討論、小組活動(dòng),以合作學(xué)習(xí)促進(jìn)自主探究。
6具體教學(xué)過(guò)程設(shè)計(jì)如下:
6.1提出問(wèn)題:[引入]同學(xué)們,前面我們學(xué)習(xí)了多項(xiàng)式乘多項(xiàng)式法則和合并同類項(xiàng)法則,你會(huì)計(jì)算下列各題嗎?
(x+3)2=,(x-3)2=,
這些式子的左邊和右邊有什么規(guī)律?再做幾個(gè)試一試:
(2m+3n)2=,(2m-3n)2=
6.2分析問(wèn)題
6.2.1[學(xué)生回答]分組交流、討論 多項(xiàng)式的結(jié)構(gòu)特點(diǎn)
。1)原式的特點(diǎn)。兩數(shù)和的平方。
(2)結(jié)果的項(xiàng)數(shù)特點(diǎn)。等于它們平方的和,加上它們乘積的'兩倍
(3)三項(xiàng)系數(shù)的特點(diǎn)(特別是符號(hào)的特點(diǎn))。
(4)三項(xiàng)與原多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系。
6.2.2[學(xué)生回答]總結(jié)完全平方公式的語(yǔ)言描述:
兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;
兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。
6.2.3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:
(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.
6.3運(yùn)用公式,解決問(wèn)題
6.3.1口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)
(m+n)2=, (m-n)2=,
(-m+n)2=, (-m-n)2=,
6.3.2小試牛刀
、(x+y)2=;②(-y-x)2=;
③(2x+3)2=;④(3a-2)2=;
6.4學(xué)生小結(jié):你認(rèn)為完全平方公式在應(yīng)用過(guò)程中,需要注意那些問(wèn)題?
(1)公式右邊共有3項(xiàng)。
(2)兩個(gè)平方項(xiàng)符號(hào)永遠(yuǎn)為正。
(3)中間項(xiàng)的符號(hào)由等號(hào)左邊的兩項(xiàng)符號(hào)是否相同決定。
(4)中間項(xiàng)是等號(hào)左邊兩項(xiàng)乘積的2倍。
6.5[作業(yè)]P34隨堂練習(xí)P36習(xí)題
完全平方公式教案13
一、教學(xué)目標(biāo)
(1)知識(shí)與技能;學(xué)生通過(guò)推導(dǎo)完全平方公式,掌握公式結(jié)構(gòu),能計(jì)算。
(2)過(guò)程與方法目標(biāo);學(xué)生探究完全平方公式,體會(huì)數(shù)形結(jié)合。
二、教學(xué)重點(diǎn);公式結(jié)構(gòu)及運(yùn)用。
三、教學(xué)難點(diǎn);公式中字母AB的含義理解與公式正確運(yùn)用。
四、教具;自制長(zhǎng)方形、正方形卡片
五、教學(xué)過(guò)程;
教師活動(dòng)
學(xué)生活動(dòng)
1.1、創(chuàng)設(shè)情景,提出問(wèn)題,引入課題
(1)想一想
一位老人很喜歡孩子,每當(dāng)孩子到他家做客時(shí),老人都拿出糖招待他們,來(lái)了幾個(gè)孩子老人就會(huì)每個(gè)孩子幾塊糖。
(1)第一天,a個(gè)男孩去看老人,老人共給他們幾塊糖?
(2)第二天,個(gè)女孩子去看望老人,老人共給他們多少塊糖?
(3)第三天,()個(gè)孩子一起去看望老人,老人共給他們多少塊糖?
(4)第三天比前二天的孩子得到糖總數(shù)哪個(gè)多?多多少?為什么?(分組討論)
1.1、學(xué)生四人一組討論。
填空:
(1)第一天給孩子塊糖。
(2)第二天給孩子塊糖。
(3)第三天給孩子塊糖。
男孩子第三天多得塊糖
女孩第三天多得塊糖。
教師活動(dòng)
學(xué)生活動(dòng)
(2)做一做、請(qǐng)同學(xué)拼圖
a
教師巡視指導(dǎo)學(xué)生拼圖
2.2、教師提問(wèn):
(1)、大正方形邊長(zhǎng)?(2)每一塊卡片的面積是多少?(3)用不同形式表示正方形總面積,比較發(fā)現(xiàn)什么?
3.3、想一想
(1)(a+b)用多項(xiàng)式乘法法則說(shuō)明
(2)(a-b)
4、請(qǐng)同學(xué)們自己敘述上面的等式
5、說(shuō)一說(shuō),ab能表示什么?
(□+○)□+2□○+○
6、算一算
(1)(2X-3)(2)(4X+5Y)
請(qǐng)同學(xué)們分清ab
7、練一練
(1)(2X-3Y)(2)(2XY-3X)
8、試一試(a+b+c)
作業(yè):P1351.2
學(xué)生2人一組拼圖交流
2、學(xué)生觀察思考
(1)大正方形邊長(zhǎng)?
(2)四塊卡片的`。面積分別是
(3)大正方形的總面積是多少?
3、(1)學(xué)生運(yùn)用多項(xiàng)式乘法法則推導(dǎo)
(a+b)=a+2ab+b說(shuō)出每一步運(yùn)算理由
(2)學(xué)生自己探究交流
4、學(xué)生用語(yǔ)言敘述公式
5、師生共同a、b對(duì)應(yīng)項(xiàng)教師書寫
6、學(xué)生獨(dú)立完成練一練展示結(jié)果
7、學(xué)生四人一組討論交流
8、有興趣的同學(xué)可以探
完全平方公式教案14
學(xué)習(xí)目標(biāo):
1、會(huì)推導(dǎo)完全平方公式,并能用幾何圖形解釋公式;
2、利用公式進(jìn)行熟練地計(jì)算;
3、經(jīng)歷探索完全平方公式的推導(dǎo)過(guò)程,發(fā)展符號(hào)感,體會(huì)特殊一般特殊的認(rèn)知規(guī)律。
學(xué)習(xí)過(guò)程:
(一)自主探索
1、計(jì)算:(1)(a+b)2 (2)(a-b)2
2、你能用文字?jǐn)⑹鲆陨系?結(jié)論嗎?
(二)合作交流:
你能利用下圖的面積關(guān)系解釋公式(a+b)2=a2+2ab+b2嗎?與同學(xué)交流。
(三)試一試,我能行。
1、利用完全平方公式計(jì)算:
(1)(x+6)2 (2)(a+2b)2 (3)(3s-t)2[來(lái)源:中.考.資.源.網(wǎng)]
(四)鞏固練習(xí)
利用完全平方公式計(jì)算:
A組:
(1)( x+ y)2 (2)(-2m+5n)2
(3)(2a+5b)2 (4)(4p-2q)2
B組:
(1)( x- y2) 2 (2)(1.2m-3n)2
(3)(- a+5b)2 (4)(- x- y)2
C組:
(1)1012 (2)542 (3)9972
(五)小結(jié)與反思
我的收獲:
我的疑惑:
(六)達(dá)標(biāo)檢測(cè)
1、(a-b)2=a2+b2+ .
2、(a+2b)2= .
3、如果(x+4)2=x2+kx+16,那么k= .
4、計(jì)算:
(1)(3m- )2 (2)(x2-1)2
(2)(-a-b)2 (4)( s+ t)2
完全平方公式教案15
一、教學(xué)目標(biāo):
經(jīng)歷探索完全平方公式的過(guò)程,進(jìn)一步發(fā)展符號(hào)感和推理能力;在變式中,拓展提高;通過(guò)積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng),培養(yǎng)學(xué)生自主探究能力,勇于創(chuàng)新的精神和合作學(xué)習(xí)的習(xí)慣;重點(diǎn)是正確理解完全平方公式(a±b)2=a2±2ab+b2,并初步運(yùn)用;難點(diǎn)是完全平方公式的運(yùn)用。
二、教學(xué)過(guò)程:
1.檢查學(xué)生的“預(yù)習(xí)知識(shí)樹”,導(dǎo)入課題:
師:前面學(xué)習(xí)了平方差公式,同學(xué)們對(duì)平方差公式的結(jié)構(gòu)特點(diǎn)、運(yùn)用以及學(xué)習(xí)公式的意義有了初步的認(rèn)識(shí)。今天,我們繼續(xù)學(xué)習(xí)、研究另一種“乘法公式”――完全平方公式。請(qǐng)拿出你的“預(yù)習(xí)知識(shí)樹”,小組內(nèi)互查并交流,在預(yù)習(xí)中有疑問(wèn)的同學(xué)請(qǐng)?jiān)儐?wèn)。
(活動(dòng):老師巡視、檢查學(xué)生的預(yù)習(xí)情況,并解答學(xué)生在預(yù)習(xí)中存在的問(wèn)題)生:(互查、討論“預(yù)習(xí)知識(shí)樹”,有問(wèn)題的詢問(wèn)問(wèn)題。)師:(老師點(diǎn)評(píng)學(xué)生預(yù)習(xí)情況,并出示老師做的“知識(shí)樹”,引出課題:完全平方公式。)說(shuō)明:把預(yù)習(xí)提到課前,利用“知識(shí)樹”引導(dǎo)學(xué)生自學(xué),學(xué)生可以獨(dú)立思考、自主學(xué)習(xí),也可合作交流、討論研究,這樣預(yù)習(xí)會(huì)更充分,聽講時(shí)就能有準(zhǔn)備、有選擇;一上課,老師就檢查“預(yù)習(xí)知識(shí)樹”,了解學(xué)生新課學(xué)習(xí)情況,適當(dāng)點(diǎn)撥,在課堂上留出更多的時(shí)間大量拓展、提高,發(fā)展學(xué)生的能力。
2.自學(xué)檢測(cè),制造通用工具:師:下面進(jìn)行自學(xué)檢測(cè).計(jì)算:⑴(x+3)2;⑵(2x-5)2;⑶(mn+t)2;⑷(-4x+y2)2。
(活動(dòng):投影顯示練習(xí)題。)生:(四人到黑板上板演,答錯(cuò)了,由學(xué)生糾正,老師再點(diǎn)評(píng)。)師:觀察練習(xí),公式中的a、b可代表什么?
生:可以表示一個(gè)數(shù),也可以表示一個(gè)單項(xiàng)式、多項(xiàng)式。
說(shuō)明:點(diǎn)評(píng)時(shí),老師反復(fù)引導(dǎo)學(xué)生分清題目中哪部分相當(dāng)于公式中的a,哪部分相當(dāng)于公式中的b,就是讓學(xué)生明確“公式中的a、b可表示數(shù),也可表示一個(gè)單項(xiàng)式、多項(xiàng)式或其他的式子”的變化規(guī)律,即制造通用工具。在前面學(xué)習(xí)平方差公式時(shí),學(xué)生應(yīng)該認(rèn)識(shí)到這個(gè)道理,在這里再次強(qiáng)化。
師:說(shuō)得非常好,明確“公式中的a、b可以表示一個(gè)數(shù),也可以表示一個(gè)單項(xiàng)式、多項(xiàng)式”的變化規(guī)律,就能正確運(yùn)用公式解題了。顯然,剛做的練習(xí)題是由公式變化來(lái)的,若是變下去,能變多少道題?
生:無(wú)數(shù)道。師:最終是幾道題?生:一道。說(shuō)明:這就是老師的“暗線”語(yǔ)言,引導(dǎo)學(xué)生明白從公式出發(fā),反映在a、b上只是取值不同,可以演變出無(wú)數(shù)道題,是“解壓”的過(guò)程,最終還是利用公式解題,所有的題目只有“一道”,只是形式不同,這又是“壓縮”的過(guò)程,把握了變化規(guī)律才能更好地解題。
師:你會(huì)變了嗎?請(qǐng)各小組編題。(活動(dòng):四人小組先在組內(nèi)討論、交流,再推選完成最快的兩個(gè)小組出示題目,其他小組同學(xué)練習(xí)。)說(shuō)明:引導(dǎo)學(xué)生現(xiàn)場(chǎng)出題,一是激發(fā)學(xué)生興趣、活躍氣氛,二是驗(yàn)證變化規(guī)律。
師:下面思考,如何計(jì)算:(a+b+c)2生1:可根據(jù)多項(xiàng)式乘以多項(xiàng)式來(lái)計(jì)算,就是把(a+b+c)2看做(a+b+c)(a+b+c)。
師:不錯(cuò)。還有其他方法嗎?生2:也可以把其中的(a+b)兩項(xiàng)看成一項(xiàng),變成[(a+b)+c]2的形式,就能直接運(yùn)用完全平方公式了。
師:說(shuō)得非常好。兩種方法都可以,但哪種更簡(jiǎn)單呢?請(qǐng)你任選一種,完成練習(xí)。
生:(緊張地做題,同時(shí)找兩個(gè)學(xué)生到黑板上板演。)師:這道題若是變?yōu)?a+b+c+d)2,你會(huì)做嗎?
生:(齊答)會(huì)。師:怎么辦?生1:把其中(a+b)看做一項(xiàng),(c+d)看做一項(xiàng),還是利用完全平方公式解題。
生2:還有其他分組方式,如把(a+c)看做一項(xiàng),(b+d)看做一項(xiàng),也能直接運(yùn)用公式解題。
師:方法一樣嗎?生:一樣的。師:還能變下去嗎?這樣可以變出多少道題?
生:無(wú)數(shù)道。師:最終是幾道題?生:(齊答)一道題。師:現(xiàn)在,老師相信每個(gè)學(xué)生都會(huì)解這樣的題了。課下,請(qǐng)同學(xué)們思考:如果把(a+b)2的'指數(shù)變化一下,又可以變出多少道題,你能計(jì)算出來(lái)嗎?
(活動(dòng):投影顯示一組題目,如(a+b)3、(a+b)4……)說(shuō)明:這就是老師進(jìn)一步利用這個(gè)例子論證“公式中的a、b可表示數(shù),也可表示一個(gè)單項(xiàng)式、多項(xiàng)式或其他的式子”的變化規(guī)律。
3.通過(guò)大量的習(xí)題驗(yàn)證通用工具,學(xué)生并且自造通用工具。
師:通過(guò)前面的檢測(cè),看出同學(xué)們已經(jīng)基本掌握了完全平方公式。下面進(jìn)入達(dá)標(biāo)檢測(cè)。
(活動(dòng):投影顯示達(dá)標(biāo)檢測(cè)題)1.填空:
、(2x+3y)2=______;②(14a-1)2=116a2-____+1;③當(dāng)x=5,y=2,則(x+y)(x-y)-(x-y)2=_________。
2.計(jì)算:
、(-2m-n)2;②(2-3a2)(3a2-2);③(-cd+12)2;④(n+3)2-n23.計(jì)算:(x+2y+3)(x+2y-3)生:(積極、主動(dòng)地在作業(yè)本上完成上面練習(xí)題。)師:(巡視,批閱完成快的學(xué)生的作業(yè),最后集體點(diǎn)評(píng),只講不會(huì)的。)說(shuō)明:第2①題,可先變形為[-(2m+n)]2,再按(a+b)2的公式展開,也可直接理解成-2m與n的差,按(a-b)2計(jì)算;第2②題將(2-3a2)變形為-(3a2-2),原式可轉(zhuǎn)化為-(3a2-2)2,直接運(yùn)用公式計(jì)算;第2④題把(n+3)看做a
、n看做b,逆用平方差公式也是一種解法,同時(shí)訓(xùn)練學(xué)生的逆向思維;第3題是下節(jié)課訓(xùn)練內(nèi)容,在這里可以提前,引導(dǎo)學(xué)生通過(guò)變形,得出(x+2y+3)(x+2y-3)=[(x+2y)+3][(x+2y)-3]=(x+2y)2-32=x2+4xy+4y2-9,這里還是把(x+2y)看做a、3看做b,進(jìn)一步驗(yàn)證了“通用工具”,即“解決某一類問(wèn)題的一種思維方式或方法”。拓展提高還是在“變”上下功夫,要求學(xué)生能較熟練掌握,逐步達(dá)到腦算的層次,水到渠成,能力自然提高,學(xué)生就會(huì)自造“通用工具”了。
4.嫁接“知識(shí)樹”,推薦作業(yè)。師:本節(jié)課你有什么收獲?還有什么問(wèn)題嗎?
(活動(dòng):再次投影本節(jié)課“知識(shí)樹”。)生:這節(jié)課我們學(xué)習(xí)、研究了完全平方公式(a±b)2=a2±2ab+b2,知道了公式中a、b,可以是單項(xiàng)式也可以是多項(xiàng)式,能運(yùn)用公式解題了,能力上又有新的提高.師:課下完成本節(jié)課的作業(yè).[投影顯示]思考題:計(jì)算(a+b+c)2、(a+b+c+d)2的結(jié)果,觀察有什么規(guī)律,感興趣的同學(xué)還可計(jì)算(a+b)3、(a+b)4的結(jié)果,你又能發(fā)現(xiàn)什么規(guī)律.預(yù)習(xí)指導(dǎo):①課本第38-39頁(yè)內(nèi)容,重點(diǎn)研究例3兩個(gè)題目的解題方法,能嘗試獨(dú)自解答課后隨堂練習(xí)或習(xí)題,②設(shè)計(jì)下節(jié)課“知識(shí)樹”,優(yōu)化本單元“知識(shí)樹”。說(shuō)明:本環(huán)節(jié)是將本節(jié)課“知識(shí)樹”
移植到乘法公式的單元“知識(shí)樹”上,整體構(gòu)建知識(shí),同時(shí)更加強(qiáng)化了學(xué)生的“能力樹”。作業(yè)是推薦性的作業(yè),達(dá)標(biāo)檢測(cè)就是“堂堂清”,學(xué)生課下只須做好預(yù)習(xí)作業(yè)就行了,這樣會(huì)有更多自由安排的時(shí)間,發(fā)展個(gè)性。
【完全平方公式教案】相關(guān)文章:
《平方根》教案03-03
公頃、平方千米 教案10-27
平方毫米符號(hào)mm203-16
電工技術(shù)公式總結(jié)11-29
自建平方租賃合同通用12-08
三年級(jí)下冊(cè)數(shù)學(xué)《公頃、平方千米》教案08-09
關(guān)于教案模板 教案模板教案06-06