亚洲色影视在线播放_国产一区+欧美+综合_久久精品少妇视频_制服丝袜国产网站

方案

二次函數(shù)教學(xué)方案

時(shí)間:2022-10-07 18:55:15 方案 我要投稿
  • 相關(guān)推薦

二次函數(shù)教學(xué)方案

  為確保事情或工作順利開(kāi)展,時(shí)常需要預(yù)先制定方案,方案是從目的、要求、方式、方法、進(jìn)度等方面進(jìn)行安排的書(shū)面計(jì)劃。那么制定方案需要注意哪些問(wèn)題呢?以下是小編為大家收集的二次函數(shù)教學(xué)方案,供大家參考借鑒,希望可以幫助到有需要的朋友。

二次函數(shù)教學(xué)方案

二次函數(shù)教學(xué)方案1

  教學(xué)目標(biāo):

  1.使學(xué)生理解函數(shù)y=a(x-h)2+k的圖象與函數(shù)y=ax2的圖象之間的關(guān)系。

  2.會(huì)確定函數(shù)y=a(x-h)2+k的圖象的開(kāi)口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo)。

  3.讓學(xué)生經(jīng)歷函數(shù)y=a(x-h)2+k性質(zhì)的探索過(guò)程,理解函數(shù)y=a(x-h)2+k的性質(zhì)。

  重點(diǎn)難點(diǎn):

  重點(diǎn):確定函數(shù)y=a(x-h)2+k的圖象的開(kāi)口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo),理解函數(shù)y=a(x-h)2+k的圖象與函數(shù)y=ax2的圖象之間的關(guān)系,理解函數(shù)y=a(x-h)2+k的性質(zhì)是教學(xué)的重點(diǎn)。

  難點(diǎn):正確理解函數(shù)y=a(x-h)2+k的'圖象與函數(shù)y=ax2的圖象之間的關(guān)系以及函數(shù)y=a(x-h)2+k的性質(zhì)是教學(xué)的難點(diǎn)。

  教學(xué)過(guò)程:

  一、提出問(wèn)題

  1.函數(shù)y=2x2+1的圖象與函數(shù)y=2x2的圖象有什么關(guān)系?

  (函數(shù)y=2x2+1的圖象可以看成是將函數(shù)y=2x2的圖象向上平移一個(gè)單位得到的)

  2.函數(shù)y=2(x-1)2的圖象與函數(shù)y=2x2的。圖象有什么關(guān)系?

二次函數(shù)教學(xué)方案2

  教學(xué)目標(biāo)

  一、 教學(xué)知識(shí)點(diǎn)

  1、 經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過(guò)程,體會(huì)方程與函數(shù)之間的聯(lián)系.

  2、 理解二次函數(shù)與 x 軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的關(guān)系,理解何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)根和沒(méi)有實(shí)根.

  3、 理解一元二次方程的根就是二次函數(shù)與y =h 交點(diǎn)的橫坐標(biāo).

  二、 能力訓(xùn)練要求

  1、經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過(guò)程,培養(yǎng)學(xué)生的探 索能力和創(chuàng)新精神

  2、通過(guò)觀察二次函數(shù)與x 軸交 點(diǎn)的個(gè)數(shù),討論 一元二次方程的根的情況,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想.

  3、通過(guò)學(xué)生共同觀察和討論,培養(yǎng)合作交流意識(shí).

  三、 情感與價(jià)值觀要求

  1、 經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過(guò)程,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性.

  2、 具有初步的創(chuàng)新精神和實(shí)踐能力.

  教學(xué)重點(diǎn)

  1.體會(huì)方程與函數(shù)之間的聯(lián)系.

  2.理解何 時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)根和沒(méi)有實(shí)根.

  3.理解一元二次方程的根就是二次函數(shù)與y =h 交點(diǎn)的橫坐標(biāo).

  教學(xué)難點(diǎn)

  1、探索方程與函數(shù)之間的聯(lián)系的過(guò)程.

  2、理解二次函數(shù)與x 軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系.

  教學(xué)方法

  討論探索法

  教學(xué)過(guò)程:

  1、 設(shè)問(wèn)題情境,引入新課

  我們已學(xué)過(guò)一元一次方程kx+b=0 (k0)和一次函數(shù)y =kx+b (k0)的關(guān)系,你還記得嗎?

  它們之間的關(guān)系是:當(dāng)一次函數(shù)中的函數(shù)值y =0時(shí),一次函數(shù)y =kx+b就轉(zhuǎn)化成了一元一次方 程kx+b=0,且一次函數(shù)的圖像與x 軸交點(diǎn)的橫坐標(biāo)即為一元一次方程kx+b=0的解.

  現(xiàn)在我們學(xué)習(xí)了一元二次方程和二次函數(shù),它們之間是否也存在一定的關(guān)系呢?本節(jié)課我們將探索有關(guān)問(wèn)題.

  2、 新課講解

  例題講解

  我們已經(jīng)知道,豎直上拋物體的高度h (m )與運(yùn)動(dòng)時(shí)間t (s )的關(guān)系可以用公式 h =-5t 2+v 0t +h 0表示,其中h 0(m)是拋出時(shí)的高度,v 0(m/s )是拋出時(shí)的速度.一個(gè)小球從地面被以40m/s 速度豎直向上拋起,小球的高度h(m)與運(yùn)動(dòng)時(shí)間t(s)的關(guān)系如下圖所示,那么

  (1)h 與t 的關(guān)系式是什么?

  (2)小球經(jīng)過(guò)多少秒后落地?你有幾種求解方法?

  小組交流,然后發(fā)表自己的看法.

  學(xué)生交流:(1)h 與t 的關(guān)系式是h =-5 t 2+v 0t +h 0,其中的v 0

  為40m/s,小球從地面拋起,所以h 0=0.把v 0,h 0帶入上式即可

  求出h 與t 的關(guān)系式h =-5t 2+40t

  (2)小球落地時(shí)h為0 ,所以只要令 h =-5t 2+v 0t +h 0中的h=0求出t即可.也就是

  -5t 2+40t=0

  t 2-8t=0

  t(t- 8)=0

  t=0或t=8

  t=0時(shí)是小球沒(méi)拋時(shí)的.時(shí)間,t=8是小球落地時(shí)的時(shí)間.

  也可以觀察圖像,從圖像上可看到t =8時(shí)小球落地.

  議一議

  二次函數(shù)①y=x2+2x ②y=x2-2x+1③y=x2-2x +2 的圖像如下圖所示

  (1)每個(gè)圖像與x 軸有幾個(gè)交點(diǎn)?

  (2)一元二次方程x2+2x=0 , x2-2x+1=0有幾個(gè)根?解方程驗(yàn)證一下, 一元二次方程x2-2x +2=0有根嗎?

  (3)二次函數(shù)的圖像y=ax2+bx+c 與x 軸交點(diǎn)的坐標(biāo)與一元二次方程ax2+bx+c=0 的根有什么關(guān)系?

  學(xué)生討論后,解答如 下:

  (1)二次函數(shù)①y=x2+2x ②y=x2-2x+1③y=x2-2x +2 的圖像與x 軸分別有兩個(gè)交點(diǎn)、一個(gè)交點(diǎn),沒(méi)有交點(diǎn).

  (2)一元二次方程x 2+2x=0有兩個(gè)根0,-2 ;x2-2x+1=0有兩個(gè)相等的實(shí)數(shù)根1或一個(gè)根1 ;方程x2-2x +2=0沒(méi)有實(shí)數(shù)根

  (3)從圖像和討論知,二次函數(shù)y=x2+2x與x 軸有兩個(gè)交點(diǎn)(0,0),(-2,0) ,方程x2+2x=0有兩個(gè)根0,-2;

  二次函數(shù)y=x2-2x+1的圖像與x 軸有一個(gè)交點(diǎn)(1,0),方程 x2-2x+1=0 有兩個(gè)相等的實(shí)數(shù)根1或一個(gè)根1

  二次函數(shù)y=x2-2x +2 的圖像與x 軸沒(méi)有交點(diǎn), 方程x2-2x +2=0沒(méi)有實(shí)數(shù)根

  由此可知 ,二次函數(shù)y=ax2+bx+c 的圖像與x 軸交點(diǎn)的橫坐標(biāo)即為一元二次方程ax2+bx+c=0的根.

  小結(jié):

  二次函數(shù)y=ax2+bx+c 的圖像與x 軸交點(diǎn)有三種情況:有兩個(gè)交點(diǎn)、一個(gè)交點(diǎn)、沒(méi)有焦點(diǎn).當(dāng)二次函數(shù)y=ax2+bx+c 的圖像與x 軸有交點(diǎn)時(shí) ,交點(diǎn)的橫坐標(biāo)就是當(dāng)y =0時(shí)自變量x 的值,即一元二次方程ax2+bx+c=0的根.

  基礎(chǔ)練習(xí)

  1、判斷下列各拋物線是否與x軸相交,如果相交,求出交點(diǎn)的坐標(biāo).

  (1)y=6x2-2x+1 (2)y=-15x2+14x+8 (3)y=x2-4x+4

  2、已知拋物線y=x2-6x+a的頂點(diǎn)在x軸上,則a= ;若拋物線與x軸有兩個(gè)交點(diǎn),則a的范圍是

  3、已知拋物線y=x2-3x+a+1與x軸最多只有一個(gè)交點(diǎn),則a的范圍是 .

  4、已知拋物線y=x2+px+q與x 軸的兩個(gè)交點(diǎn)為(-2,0),(3,0),則p= ,q= .

  5. 已知拋物線 y=-2(x+1)2+8 ①求拋物線與y軸的交點(diǎn)坐標(biāo);②求拋物線與x軸的兩個(gè)交點(diǎn)間的距離.

  6、拋物線y=a x2+bx+c(a0)的圖象全部在軸下方的條件是( )

  (A) a0 b2-4ac0(B)a0 b2-4ac0

  (B) (C)a0 b2- 4ac0 (D)a0 b2-4ac0

  想一想

  在本節(jié)一開(kāi)始的小球上拋問(wèn)題中,何時(shí)小球離地面的高度是60 m?你是怎樣知道的?

  學(xué)生交流:在式子h =-5t 2+v 0t +h 0中v 0為40m/s, h 0=0,h=60 m,代入上式得

  -5t 2+40t=60

  t 28t+12=0

  t=2或t=6

  因此當(dāng)小球離開(kāi)地面2秒和6秒時(shí),高度是6 0 m.

  課堂練習(xí) 72頁(yè)

  小結(jié) :本節(jié)課學(xué)習(xí)了如下內(nèi)容:

  1、若一元二 次方程ax2+bx+c=0的兩個(gè)根是x1、x2, 則拋物線y=ax2+bx+c與x軸的兩個(gè)交點(diǎn)坐標(biāo)分別是A(x1,0 ), B( x2,0 )

  2、一元二次方程ax2+bx+c=0與二次三項(xiàng)式ax2+bx+c及二次函數(shù)y=ax2+bx+c這三個(gè)二次之間互相轉(zhuǎn)化的關(guān)系.體現(xiàn)了數(shù)形結(jié)合的思想3、二次函數(shù)y=ax2+bx+c何時(shí)為一元二次方程?

二次函數(shù)教學(xué)方案3

  教學(xué)目標(biāo):

  1、使學(xué)生會(huì)用描點(diǎn)法畫(huà)出=ax2的圖象,理解拋物線的有關(guān)概念。

  2、使學(xué)生經(jīng)歷、探索二次函數(shù)=ax2圖象性質(zhì)的過(guò)程,培養(yǎng)學(xué)生觀察、思考、歸納的良好思維習(xí)慣重點(diǎn)難點(diǎn):

  重點(diǎn):使學(xué)生理解拋物線的有關(guān)概念,會(huì)用描點(diǎn)法畫(huà)出二次函數(shù)=ax2的圖象是教學(xué)的重點(diǎn)。難點(diǎn):用描點(diǎn)法畫(huà)出二次函數(shù)=ax2的圖象以及探索二次函數(shù)性質(zhì)是教學(xué)的難點(diǎn)。

  教學(xué)過(guò)程:

  一、提出問(wèn)題

  1,同學(xué)們可以回想一下,一次函數(shù)的性質(zhì)是如何研究的?

  (先畫(huà)出一次函數(shù)的圖象,然后觀察、分析、歸納得到一次函數(shù)的性質(zhì))

  2.我們能否類比研究一次函數(shù)性質(zhì)方法來(lái)研究二次函數(shù)的性質(zhì)呢?如果可以,應(yīng)先研究什么?

  (可以用研究一次函數(shù)性質(zhì)的方法來(lái)研究二次函數(shù)的性質(zhì),應(yīng)先研究二次函數(shù)的圖象)

  3.一次函數(shù)的圖象是什么?二次函數(shù)的圖象是什么?

  二、范例

  例1、畫(huà)二次函數(shù)=ax2的圖象。

  解 :(1)列表:在x的取值范圍內(nèi)列出函數(shù)對(duì)應(yīng)值表:

  x…-3-2-10123…

  …9410 149…

  (2)在直角坐標(biāo)系中描點(diǎn):用表里各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在平面直角坐標(biāo)系中描點(diǎn)

  (3)連線:用光滑的曲線順次連結(jié)各點(diǎn),得到函數(shù)=x2的圖象,如圖所示。

  提問(wèn):觀察這個(gè)函數(shù)的圖象,它有什么特點(diǎn)?

  讓學(xué)生觀察,思考、討論、交流,歸結(jié)為:它有一條對(duì)稱軸,且對(duì)稱軸和圖象有一點(diǎn)交點(diǎn)。

  拋物線概念:像這樣的曲線通常叫做拋物線。

  頂點(diǎn)概念:拋物線與它的對(duì)稱軸的交點(diǎn)叫做 拋物線的頂點(diǎn).

  三、做一做

  1.在同一直角坐標(biāo)系中,畫(huà)出函數(shù)=x2與=-x2的圖象,觀察并比較兩個(gè)圖象,你發(fā)現(xiàn)有什么共同點(diǎn)?又有什么區(qū)別?

  2.在同一直角坐標(biāo)系中,畫(huà)出函數(shù)=2x2與=-2x2的圖象,觀察并比較這兩個(gè)函數(shù)的圖象,你能發(fā)現(xiàn)什么?

  3.將所畫(huà)的四個(gè)函數(shù)的圖象作比較,你又能發(fā)現(xiàn)什么?

  對(duì)于1,在學(xué)生畫(huà)函數(shù)圖象的同時(shí),教師要指導(dǎo)中下水平的學(xué)生,講評(píng)時(shí),要引導(dǎo)學(xué)生討論選幾個(gè)點(diǎn)比較合適以及如何選點(diǎn)。兩個(gè)函數(shù)圖象的共同點(diǎn)以及它們的區(qū)別,可分組討論。交流,讓學(xué)生發(fā)表不同的意見(jiàn),達(dá)成共識(shí),兩個(gè)函數(shù)的圖象都是拋物線,都關(guān)于軸對(duì)稱,頂點(diǎn)坐標(biāo)都是(0,0),區(qū)別在于函數(shù)=x2的圖象開(kāi)口向上,函數(shù)=-x2的圖象開(kāi)口向下。

  對(duì)于2,教師要繼續(xù)巡視,指導(dǎo)學(xué)生畫(huà)函數(shù)圖象,兩個(gè) 函數(shù)的圖象的特點(diǎn);教師可引導(dǎo)學(xué)生類比1得出。

  對(duì)于3,教師可引導(dǎo)學(xué)生從1的共同點(diǎn)和2的發(fā)現(xiàn)中得到結(jié)論:四個(gè)函數(shù)的圖象都是拋物線,都關(guān)于軸對(duì)稱,它的頂點(diǎn)坐標(biāo)都是(0,0).

  四、歸納、 概括

  函數(shù)=x2、=-x2、=2x2、=-2x2是函數(shù)=ax2的特例,由函數(shù)=x2、=-x2、=2x2、=-2x2的圖象的共同特點(diǎn),可猜想:

  函數(shù)=a x2的圖象是一條________,它關(guān)于______對(duì)稱,它的頂點(diǎn)坐標(biāo)是______。

  如果要更細(xì)致地研究函數(shù)=ax2圖象的特點(diǎn)和性質(zhì),應(yīng)如何分類?為什么?

  讓學(xué)生觀察=x2、=2x2的圖象,填空;

  當(dāng)a>0時(shí),拋物線=ax2 開(kāi)口______,在對(duì)稱軸的左邊,曲線自左向右______;在對(duì)稱軸的右邊,曲線自左向右______,______是拋物線上位置最低的點(diǎn)。

  圖象的這些特點(diǎn)反映了函數(shù)的什么性質(zhì)?

  先讓學(xué)生觀察下圖,回答以下問(wèn)題;

  (1)XA 、XB大小關(guān)系如何?是否都小于0?

  (2)A、B大小關(guān)系如何?

  (3)XC、XD大小關(guān)系如何?是否都大于0?

  (4)C、D大小關(guān)系如何?

  (XA<XB,且XA<0,XB<0;a>B;XC0,XD>0,C<D)

  其次,讓學(xué)生填空。

  當(dāng)X<0時(shí),函數(shù)值隨著x的'增大而______,當(dāng)x>O時(shí),函數(shù)值隨X的增大而______;當(dāng)X=______時(shí),函數(shù)值=ax2 (a>0)取得最小值,最小值=______

  以上結(jié)論就是當(dāng)a>0時(shí),函數(shù)=ax2的性質(zhì)。

  思考以下問(wèn)題:

  觀察函數(shù)=-x2、=-2x2的圖象,試作出類似的概括,當(dāng)a<O時(shí),拋物線=ax2有些什么特點(diǎn)?它反映了 當(dāng)a<O時(shí),函數(shù)=ax2具有哪些性質(zhì)?

  讓學(xué)生討論、交流,達(dá)成共識(shí),當(dāng)a<O時(shí),拋物線=ax2開(kāi)口向上,在對(duì)稱軸的左邊,曲線自左向右上升;在對(duì)稱軸的右邊,曲線自左向右下降,頂 點(diǎn)拋 物線上位置最 高的點(diǎn)。圖象的這些特點(diǎn),反映了當(dāng)a<O時(shí),函數(shù)=ax2的性質(zhì);當(dāng)x<0時(shí),函數(shù)值隨x的增大而增大;與x>O時(shí),函數(shù)值隨x的增大而減小,當(dāng)x=0時(shí),函數(shù)值=ax2取得 最大值,最大值是=0。

  五、課堂練習(xí):P6練習(xí)1、2、3、4。

  六、作業(yè): 1.如何畫(huà)出函數(shù)=ax2的圖象?

  2.函數(shù)=ax2具有哪些性質(zhì)?

  3.談?wù)勀銓?duì)本節(jié)課學(xué)習(xí)的體會(huì)。

【二次函數(shù)教學(xué)方案】相關(guān)文章:

《二次函數(shù)》教案10-13

關(guān)于函數(shù)的數(shù)學(xué)教學(xué)方案10-08

初中數(shù)學(xué)二次函數(shù)教學(xué)探討論文10-12

有關(guān)對(duì)函數(shù)的再認(rèn)識(shí)的教學(xué)方案10-08

《函數(shù)與方程》教學(xué)方案設(shè)計(jì)10-08

九年級(jí)數(shù)學(xué)下冊(cè)《二次函數(shù)》的教學(xué)教案10-08

數(shù)學(xué)《反函數(shù)》教學(xué)方案設(shè)計(jì)10-08

數(shù)學(xué)《變量與函數(shù)》教學(xué)方案設(shè)計(jì)10-08

一次函數(shù)教學(xué)方案設(shè)計(jì)10-08

反比例函數(shù)的教學(xué)教案10-08