亚洲色影视在线播放_国产一区+欧美+综合_久久精品少妇视频_制服丝袜国产网站

學(xué)習(xí)方法

高中數(shù)學(xué)學(xué)習(xí)方

時間:2024-08-02 18:09:15 學(xué)習(xí)方法 我要投稿
  • 相關(guān)推薦

高中數(shù)學(xué)學(xué)習(xí)方法(通用)

  無論是在學(xué)校還是在社會中,每個階段都有需要學(xué)習(xí)的內(nèi)容,掌握一定的學(xué)習(xí)方法,學(xué)習(xí)效率就會提高很多。想要更高效的學(xué)習(xí)嗎?下面是小編幫大家整理的高中數(shù)學(xué)學(xué)習(xí)方法,僅供參考,希望能夠幫助到大家。

高中數(shù)學(xué)學(xué)習(xí)方法(通用)

高中數(shù)學(xué)學(xué)習(xí)方法1

  1、一個充分條件,濃厚的興趣與動力

  數(shù)學(xué)是如此的重要,生活中的股票、存款利率、增長率、幾個百分點、最少用料、最大利潤、風(fēng)險決策……哪一樣不與數(shù)學(xué)有關(guān)。就高考而言,數(shù)學(xué)占150分,特殊的地位決定了應(yīng)有特殊的驅(qū)動力,尤其要培養(yǎng)對數(shù)學(xué)的興趣與感覺,要創(chuàng)造一個一個小小的成功,因為興趣總是與成功聯(lián)系在一起的,如聽懂課,掌握一種好的解題方法,解出一道道數(shù)學(xué)難題等。可是有的同學(xué)因基礎(chǔ)不扎實,就是對數(shù)學(xué)沒感覺,怎么辦?我的建議是,假喜真干,就是假裝喜歡并且付出實際行動。美國著名教育家戴爾?卡耐基提出:“假如你‘假裝’對工作、對學(xué)習(xí)感興趣,這態(tài)度往往就使你的興趣變成真的,這種態(tài)度還能減少疲勞、緊張和憂慮!彼,心態(tài)的改變所產(chǎn)生的力量,神妙無比。

  2、三個必要條件,“雙基”,努力,熟練

  必須扎實基礎(chǔ),一個“雙基”很差的學(xué)生,數(shù)學(xué)能力無從談起,對這部分基礎(chǔ)欠缺的同學(xué)就要降低復(fù)習(xí)重心,F(xiàn)在的高考容易題、中等題、難題的比例為4:5:1,也表明了基礎(chǔ)知識的重要性,這就要努力,要求知識點到邊到角。大量的調(diào)查分析表明,數(shù)學(xué)高考中,考生用于思考的時間最多只有85分鐘,此等情勢逼迫你必須熟練。

  首先要改變觀念。

  初中階段,特別是初中三年級,通過大量的練習(xí),可使你的成績有明顯的提高,這是因為初中數(shù)學(xué)知識相對比較淺顯,更易于掌握,通過反復(fù)練習(xí),提高了熟練程度,即可提高成績,既使是這樣,對有些問題理解得不夠深刻甚至是不理解的。例如在初中問a=2時,a等于什么,在中考中錯的人極少,然而進(jìn)入高中后,老師問,如果a=2,且a<0,那么a等于什么,既使是重點學(xué)校的學(xué)生也會有一些同學(xué)毫不思索地回答:a=2。就是以說明了這個問題。又如,前幾年北京四中高一年級的一個同學(xué)在高一上學(xué)期期中考試以后,曾向老師提出“抗議”說:“你們平時的作業(yè)也不多,測驗也很少,我不會學(xué)”,這也正說明了改變觀念的重要性。

  高中數(shù)學(xué)的理論性、抽象性強,就需要在對知識的理解上下功夫,要多思考,多研究。

  提高聽課的效率是關(guān)鍵。

  學(xué)生學(xué)習(xí)期間,在課堂的時間占了一大部分。因此聽課的效率如何,決定著學(xué)習(xí)的基本狀況,提高聽課效率應(yīng)注意以下幾個方面:

  1、 課前預(yù)習(xí)能提高聽課的針對性。

  預(yù)習(xí)中發(fā)現(xiàn)的難點,就是聽課的重點;對預(yù)習(xí)中遇到的沒有掌握好的有關(guān)的舊知識,可進(jìn)行補缺,以減少聽課過程中的.困難;有助于提高思維能力,預(yù)習(xí)后把自己理解了的東西與老師的講解進(jìn)行比較、分析即可提高自己思維水平;預(yù)習(xí)還可以培養(yǎng)自己的自學(xué)能力。

  2、 聽課過程中的科學(xué)。

  首先應(yīng)做好課前的物質(zhì)準(zhǔn)備和精神準(zhǔn)備,以使得上課時不至于出現(xiàn)書、本等物丟三落四的現(xiàn)象;上課前也不應(yīng)做過于激烈的體育運動或看小書、下棋、打牌、激烈爭論等。以免上課后還喘噓噓,或不能平靜下來。

  其次就是聽課要全神貫注。

  全神貫注就是全身心地投入課堂學(xué)習(xí),耳到、眼到、心到、口到、手到。

  耳到:就是專心聽講,聽老師如何講課,如何分析,如何歸納總結(jié),另外,還要聽同學(xué)們的答問,看是否對自己有所啟發(fā)。

  眼到:就是在聽講的同時看課本和板書,看老師講課的表情,手勢和演示實驗的動作,生動而深刻的接受老師所要表達(dá)的思想。

  心到:就是用心思考,跟上老師的數(shù)學(xué)思路,分析老師是如何抓住重點,解決疑難的。

  口到:就是在老師的指導(dǎo)下,主動回答問題或參加討論。

  手到:就是在聽、看、想、說的基礎(chǔ)上劃出課文的重點,記下講課的要點以及自己的感受或有創(chuàng)新思維的見解。

  若能做到上述“五到”,精力便會高度集中,課堂所學(xué)的一切重要內(nèi)容便會在自己頭腦中留下深刻的印象。

  3、 特別注意老師講課的開頭和結(jié)尾。

  老師講課開頭,一般是概括前節(jié)課的要點指出本節(jié)課要講的內(nèi)容,是把舊知識和新知識聯(lián)系起來的環(huán)節(jié),結(jié)尾常常是對一節(jié)課所講知識的歸納總結(jié),具有高度的概括性,是在理解的基礎(chǔ)上掌握本節(jié)知識方法的綱要。

  4、要認(rèn)真把握好思維邏輯,分析問題的思路和解決問題的思想方法,堅持下去,就一定能舉一反三,提高思維和解決問題的能力。

  此外還要特別注意老師講課中的提示。

  老師講課中常常對一些重點難點會作出某些語言、語氣、甚至是某種動作的提示。

  最后一點就是作好筆記,筆記不是記錄而是將上述聽課中的要點,思維方法等作出簡單扼要的記錄,以便復(fù)習(xí),消化,思考。

  做好復(fù)習(xí)和總結(jié)工作。

  1、做好及時的復(fù)習(xí)。

  課完課的當(dāng)天,必須做好當(dāng)天的復(fù)習(xí)。

  復(fù)習(xí)的有效方法不是一遍遍地看書或筆記,而是采取回憶式的復(fù)習(xí):先把書,筆記合起來回憶上課老師講的內(nèi)容,例題:分析問題的思路、方法等(也可邊想邊在草稿本上寫一寫)盡量想得完整些。然后打開筆記與書本,對照一下還有哪些沒記清的,把它補起來,就使得當(dāng)天上課內(nèi)容鞏固下來,同時也就檢查了當(dāng)天課堂聽課的效果如何,也為改進(jìn)聽課方法及提高聽課效果提出必要的改進(jìn)措施。

  2、 做好單元復(fù)習(xí)。

  學(xué)習(xí)一個單元后應(yīng)進(jìn)行階段復(fù)習(xí),復(fù)習(xí)方法也同及時復(fù)習(xí)一樣,采取回憶式復(fù)習(xí),而后與書、筆記相對照,使其內(nèi)容完善,而后應(yīng)做好單元小節(jié)。

  3做好單元小結(jié)。

  單元小結(jié)內(nèi)容應(yīng)包括以下部分。

  (1)本單元(章)的知識網(wǎng)絡(luò);

  (2)本章的基本思想與方法(應(yīng)以典型例題形式將其表達(dá)出來);

  (3)自我體會:對本章內(nèi),自己做錯的典型問題應(yīng)有記載,分析其原因及正確答案,應(yīng)記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。

  關(guān)于做練習(xí)題量的問題

  有不少同學(xué)把提高數(shù)學(xué)成績的希望寄托在大量做題上。我認(rèn)為這是不妥當(dāng)?shù),我認(rèn)為,“不要以做題多少論英雄”,重要的不在做題多,而在于做題的效益要高。做題的目的在于檢查你學(xué)的知識,方法是否掌握得很好。如果你掌握得不準(zhǔn),甚至有偏差,那么多做題的結(jié)果,反而鞏固了你的缺欠,因此,要在準(zhǔn)確地把握住基本知識和方法的基礎(chǔ)上做一定量的練習(xí)是必要的。而對于中檔題,尢其要講究做題的效益,即做題后有多大收獲,這就需要在做題后進(jìn)行一定的“反思”,思考一下本題所用的基礎(chǔ)知識,數(shù)學(xué)思想方法是什么,為什么要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過,把它們聯(lián)系起來,你就會得到更多的經(jīng)驗和教訓(xùn),更重要的是養(yǎng)成善于思考的好習(xí)慣,這將大大有利于你今后的學(xué)習(xí)。當(dāng)然沒有一定量(老師布置的作業(yè)量)的練習(xí)就不能形成技能,也是不行的。

  另外,就是無論是作業(yè)還是測驗,都應(yīng)把準(zhǔn)確性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,也是學(xué)好數(shù)學(xué)的重要問題。

  最后想說的是:“興趣”和信心是學(xué)好數(shù)學(xué)的最好的老師。這里說的“興趣”沒有將來去研究數(shù)學(xué),做數(shù)學(xué)家的意思,而主要指的是不反感,不要當(dāng)做負(fù)擔(dān)!皞ゴ蟮膭恿Ξa(chǎn)生于偉大的理想”。只要明白學(xué)習(xí)數(shù)學(xué)的重要,你就會有無窮的力量,并逐步對數(shù)學(xué)感到興趣。有了一定的興趣,隨之信心就會增強,也就不會因為某次考試的成績不理想而泄氣,在不斷總結(jié)經(jīng)驗和教訓(xùn)的過程中,你的信心就會不斷地增強,你也就會越來越認(rèn)識到“興趣”和信心是你學(xué)習(xí)中的最好的老師。

高中數(shù)學(xué)學(xué)習(xí)方法2

  一、 高中數(shù)學(xué)與初中數(shù)學(xué)特點的變化。

  1、數(shù)學(xué)語言在抽象程度上突變。

  不少學(xué)生反映,集合、映射等概念難以理解,覺得離生活很遠(yuǎn),似乎很“玄”。確實,初、高中的數(shù)學(xué)語言有著顯著的區(qū)別。初中的數(shù)學(xué)主要是以形象、通俗的語言方式進(jìn)行表達(dá)。而高一數(shù)學(xué)一下子就觸及抽象的集合語言、邏輯運算語言以及以后要學(xué)習(xí)到的函數(shù)語言、空間立體幾何等。

  2、思維方法向理性層次躍遷。

  高一學(xué)生產(chǎn)生數(shù)學(xué)學(xué)習(xí)障礙的另一個原因是高中數(shù)學(xué)思維方法與初中階段大不相同。初中階段,很多老師為學(xué)生將各種題建立了統(tǒng)一的思維模式,如解分式方程分幾步,因式分解先看什么,再看什么,即使是思維非常靈活的平面幾何問題,也對線段相等、角相等、、、、、、分別確定了各自的思維套路。因此,初中學(xué)習(xí)中習(xí)慣于這種機械的,便于操作的定勢方式,而高中數(shù)學(xué)在思維形式上產(chǎn)生了很大的變化,正如上節(jié)所述,數(shù)學(xué)語言的抽象化對思維能力提出了高要求。當(dāng)然,能力的發(fā)展是漸進(jìn)的,不是一朝一夕的事,這種能力要求的突變使很多高一新生感到不適應(yīng),故而導(dǎo)致成績下降。高一新生一定要能從經(jīng)驗型抽象思維向理論型抽象思維過渡,最后還需初步形成辯證形思維。

  3、知識內(nèi)容的整體數(shù)量劇增

  高中數(shù)學(xué)與初中數(shù)學(xué)又一個明顯的不同是知識內(nèi)容的“量”上急劇增加了,單位時間內(nèi)接受知識信息的量與初中相比增加了許多,輔助練習(xí)、消化的課時相應(yīng)地減少了。這就要求第一,要做好課后的復(fù)習(xí)工作,記牢大量的知識;第二,要理解掌握好新舊知識的內(nèi)在聯(lián)系,使新知識順利地同化于原有知識結(jié)構(gòu)之中;第三,因知識教學(xué)多以零星積累的方式進(jìn)行的,當(dāng)知識信息量過大時,其記憶效果不會很好。因此要學(xué)會對知識結(jié)構(gòu)進(jìn)行梳理,形成板塊結(jié)構(gòu),實行“整體集裝”,如表格化,使知識結(jié)構(gòu)一目了然;類化,由一例到一類,由一類到多類,由多類到統(tǒng)一;使幾類問題同構(gòu)于同一知識方法;第四,要多做總結(jié)、歸類,建立主體的知識結(jié)構(gòu)網(wǎng)絡(luò)。

  二、不良的學(xué)習(xí)狀態(tài)。

  1、 學(xué)習(xí)習(xí)慣因依賴心理而滯后。

  初中生在學(xué)習(xí)上的依賴心理是很明顯的。第一,為提高分?jǐn)?shù),初中數(shù)學(xué)教學(xué)中教師將各種題型都一一羅列,學(xué)生依賴于教師為其提供套用的“模子”;第二,家長望子成龍心切,回家后輔導(dǎo)也是常事。升入高中后,教師的教學(xué)方法變了,套用的“模子”沒有了,家長輔導(dǎo)的能力也跟不上了,由“參與學(xué)習(xí)”轉(zhuǎn)入“督促學(xué)習(xí)”。許多同學(xué)進(jìn)入高中后,還象初中那樣,有很強的依賴心理,跟隨老師慣性運轉(zhuǎn),沒有掌握學(xué)習(xí)的主動權(quán)。表現(xiàn)在不定計劃,坐等上課,課前沒有預(yù)習(xí),對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”。

  2、 思想松懈。有些同學(xué)把初中的那一套思想移植到高中來。他們認(rèn)為自已在初一、二時并沒有用功學(xué)習(xí),只是在初三臨考時才發(fā)奮了一、二個月就輕而易舉地考上了高中,而且有的可能還是重點中學(xué)里的重點班,因而認(rèn)為讀高中也不過如此,高一、高二根本就用不著那么用功,只要等到高三臨考時再發(fā)奮一、二個月,也一樣會考上一所理想的大學(xué)的。存有這種思想的同學(xué)是大錯特錯的。因為在我們廣州市可以說是普及了高中教育,因此中考的題目并不具有很明顯的選撥性,同學(xué)們都很容易考得高分。但高考就不同了,目前我們國家還不可能普及高等教育,高等教育可以說還是屬于一種精英教育,只能選撥一些成績好的同學(xué)去讀大學(xué),因此高考的題目具有很強的選撥性,如果心存僥幸,想在高三時再發(fā)奮一、二個月就考上大學(xué),那到頭來你會后悔莫及的。同學(xué)們不妨打聽打聽現(xiàn)在的高三,有多少同學(xué)就是因為高一、二不努力學(xué)習(xí),現(xiàn)在臨近高考了,發(fā)現(xiàn)自己缺漏了很多知識而而焦急得到處請家教。

  3、 學(xué)不得法。老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法。而一部分同學(xué)上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背,還有些同學(xué)晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。

  4、 不重視基礎(chǔ)。一些“自我感覺良好”的同學(xué),常輕視基本知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠(yuǎn),重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。

  5、 進(jìn)一步學(xué)習(xí)條件不具備。高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識的深度、廣度,能力要求都是一次飛躍。這就要求必須掌握基礎(chǔ)知識與技能為進(jìn)一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高。如二次函數(shù)值的求法,實根分布與參變量的討論,三角公式的變形與靈活運用,空間概念的形成,排列組合應(yīng)用題及實際應(yīng)用問題等。有的內(nèi)容還是初中教材都不講的脫節(jié)內(nèi)容,如不采取補救措施,查缺補漏,就必然會跟不上高中學(xué)習(xí)的要求。

  三、 科學(xué)地進(jìn)行學(xué)習(xí)。

  學(xué)習(xí)集合應(yīng)注意的幾個問題

  集合是中的重要概念,它是研究函數(shù)的工具 高一,也是命題的熱點。同學(xué)們要想學(xué)好集合,必須在掌握概念的基礎(chǔ)上,還應(yīng)注意以下幾點。

  一、靈活運用集合中元素的性質(zhì)

  例1. 已知集合< > < > ,且A=B,求實數(shù)a,b的'值。

  解:由A=B,得

  由集合相等的定義,得

  解這兩個方程組得 , 與 為所求

  例2. 已知集合

  即

  當(dāng) 即為所求。

  二、掌握判定集合關(guān)系的

  例3. 已知集合 ,判定集合A,B間的關(guān)系。

  解:

  由

  由此可知集合A中 的分子為整數(shù)。

  ∴ ,求集合A、B間的關(guān)系。

  解:

  例5. 已知集合P、Q、M滿足

  由 ,且 ,實數(shù)p的取值范圍。

  分析: ,知 這一特殊情況

  解:由

  解得

  綜上知p的取值范圍是

  點子的排列方向

  正常的骰子,相對兩面的點子數(shù)目之和總是7;就此而言,上圖中的三只骰子是正常的。但是,從點子的排列方向來看,其中有一只與其他兩只不同。

  在A、B、C這三只骰子中,哪一只與其他兩只不同?

 。ㄌ崾荆号卸男┟嫔系狞c子可以有不同的排列方向;然后判定這些排列方向在不同的骰子中是否一致。)

  答 案

  無論骰子怎樣擺,一點、四點和五點的排列方向總是不變的。但是,兩點、三點和六點卻可以有如下不同的排列方向:

  以下的推理,是以相對兩面點數(shù)之和為7的事實為依據(jù)的。

  如果骰子B和骰子A相同,則骰子B上的兩點的排列方向必定與圖中所示的呈對稱相反。所以骰子A和骰子B不是相同的。

  如果骰子C和骰子A相同,則骰子C上的三點的排列方向必定與圖中所示的呈對稱相反。所以骰子A和骰子C是不相同的。

  如果骰子C和骰子B相同,則骰子C上的六點應(yīng)該是像圖中所示的排列方向。

  由于題目中指明有兩只骰子相同,因此相同的必定是骰子B和骰子C。與它們不同的便是骰子A了。

高中數(shù)學(xué)學(xué)習(xí)方法3

  關(guān)鍵詞:高中;數(shù)學(xué);方法

  高中階段是學(xué)生學(xué)習(xí)的關(guān)鍵時期,這是培養(yǎng)學(xué)生良好學(xué)習(xí)習(xí)慣和正確學(xué)習(xí)方法的重要時期。高中階段的學(xué)習(xí)一改初中學(xué)習(xí)的模式,重在學(xué)生學(xué)習(xí)方法的培養(yǎng)。很多在初中學(xué)習(xí)還不錯的學(xué)生到高中時期卻出現(xiàn)學(xué)習(xí)成績下滑,首先一個重要的標(biāo)志就是數(shù)學(xué)成績的下降。這主要是因為很多學(xué)生還不能轉(zhuǎn)變初中的學(xué)習(xí)思維,不了解高中數(shù)學(xué)的特點,因此經(jīng)常事倍功半。因此,要想學(xué)好高中數(shù)學(xué),必須改變固有的思維,從方法上找原因。

  一、了解高中數(shù)學(xué)的特點,從而轉(zhuǎn)變思維認(rèn)知

  1.數(shù)學(xué)概念與語言的抽象化

  進(jìn)入高中階段后,很多學(xué)生表現(xiàn)出明顯的不適應(yīng),他們很多反映高中數(shù)學(xué)過于復(fù)雜,理解起來很困難。的確,高中數(shù)學(xué)與初中數(shù)學(xué)相比,在概念的定義上和語言的描述上都更具有抽象性和專業(yè)化。初中數(shù)學(xué)以形象化的描述為主,而高中數(shù)學(xué)則是側(cè)重于對學(xué)生邏輯思維能力和數(shù)學(xué)方法的探究,因此在表達(dá)和定義上更具有專業(yè)性特點。

  2.思維方法和邏輯能力的培養(yǎng)

  在小學(xué)和初中階段,是打好數(shù)學(xué)基礎(chǔ)的階段,因此,這一階段著重對學(xué)生數(shù)學(xué)興趣的激發(fā)。在解題方法上,多是有著明晰的步驟,每道題都具有統(tǒng)一的解題方法,比如因式分解題,應(yīng)該先看什么再看什么,都有著明確的步驟規(guī)定,學(xué)生只要掌握步驟即可。因此,初中的學(xué)習(xí)模式基本上是固定的,而高中數(shù)學(xué)則徹底改變了這一模式,它對學(xué)生的思維能力和邏輯能力有著非常高的要求,要求學(xué)生能夠創(chuàng)新思維,運用適當(dāng)?shù)臄?shù)學(xué)方法解題,重在對學(xué)生數(shù)學(xué)能力的培養(yǎng)。

  二、養(yǎng)成良好的數(shù)學(xué)學(xué)習(xí)方法和習(xí)慣

  1.依賴心理

  很多學(xué)生上高中后學(xué)習(xí)成績下滑,很大程度上是因為在高中以前養(yǎng)成的依賴心理。首先,是對教師的依賴。初中時期數(shù)學(xué)課都是教師傳授解題方法,學(xué)生只要按部就班學(xué)好現(xiàn)成的就可以取得很好的成績;其次,是對家長的依賴。很多家長都會在家給孩子輔導(dǎo),幫助他們解決難題。因此,這些因素都導(dǎo)致了學(xué)生產(chǎn)生很強的依賴心理,把這種心理帶到高中學(xué)習(xí)中,依靠著他們推動著自己學(xué)習(xí),而不會主動地去獲取知識,這樣自然導(dǎo)致成績的下滑。

  2.思想誤區(qū)

  很多學(xué)生對高中學(xué)習(xí)在思想上有個誤區(qū),就是普遍認(rèn)為高一高二不重要,只要高三努力了就可以考上好大學(xué)。其實,這種思想是初中以來形成的,由于我們國家采取義務(wù)教育,使得很多學(xué)生都能輕易地考上高中,但是高中學(xué)習(xí)并不是如此,目前我們國家的高等教育還未完全普及,大學(xué)教育仍然具有很強的選擇性,因此,只有一部分成績優(yōu)秀的學(xué)生才能上得了好大學(xué)。而很多高中生并未認(rèn)識到這種情況,等到高三才努力為時已晚。

  3.學(xué)不得法

  高中數(shù)學(xué)的學(xué)習(xí)重在培養(yǎng)學(xué)生的思維方法和數(shù)學(xué)能力,很多學(xué)生學(xué)習(xí)下降在很大方面是由于學(xué)習(xí)方法不當(dāng)。教師上課一般都會引導(dǎo)學(xué)生學(xué)習(xí)概念,講析概念的來龍去脈,剖析重點、難點,這就使學(xué)生養(yǎng)成了依賴心理,只注重記筆記,而沒有聽教師在講什么。因此導(dǎo)致在課后不能完全消化課堂知識,只能根據(jù)概念硬寫作業(yè),這樣必然導(dǎo)致數(shù)學(xué)的學(xué)習(xí)效率不高。

  三、運用科學(xué)的方法學(xué)習(xí)數(shù)學(xué)

  好的學(xué)習(xí)方法和學(xué)習(xí)習(xí)慣經(jīng)常能夠事半功倍,數(shù)學(xué)學(xué)習(xí)就是

  如此,有的學(xué)生花了很多時間和精力,可還是不能提高數(shù)學(xué)成績,而有的學(xué)生輕而易舉就能獲取高分,究其原因在于科學(xué)的學(xué)習(xí)方

  法。只有養(yǎng)成一個科學(xué)的學(xué)習(xí)方法,才能把數(shù)學(xué)知識學(xué)以致用。

  1.培養(yǎng)科學(xué)的數(shù)學(xué)學(xué)習(xí)習(xí)慣

  數(shù)學(xué)的學(xué)習(xí)不僅要靠努力,還要有一套科學(xué)的學(xué)習(xí)方法。所謂的科學(xué)學(xué)習(xí)方法,指的是學(xué)生能夠把握數(shù)學(xué)學(xué)科的`特點,根據(jù)自身的學(xué)習(xí)情況和思維能力,探索出一套適合自己學(xué)習(xí)的方法,從而形成自己的學(xué)習(xí)習(xí)慣。良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣包括學(xué)習(xí)時間的計劃、課前預(yù)習(xí)與課后復(fù)習(xí)、上課專心、獨立完成做作業(yè)、虛心請教等,這些良好習(xí)慣的培養(yǎng)可以有效提高數(shù)學(xué)學(xué)習(xí)成績。

  2.循序漸進(jìn),切勿急躁

  在數(shù)學(xué)學(xué)習(xí)中經(jīng)常會有學(xué)生抱怨數(shù)學(xué)成績見效太慢,自己花了那么長時間卻收效甚微,甚至開始懷疑自己的能力;而有的學(xué)生容易大喜大悲,取得一點成績便沾沾自喜,遭遇挫折便灰心喪氣,這種情緒的波動十分不利于數(shù)學(xué)的學(xué)習(xí)。其實,數(shù)學(xué)的學(xué)習(xí)是項長期的工程,不能盲目追求速度,更不能因為一時的成敗就盲目否定自己。只要大家端正態(tài)度,遵循數(shù)學(xué)學(xué)習(xí)的方法特點,注重夯實數(shù)學(xué)基礎(chǔ),拓展數(shù)學(xué)思維,就能夠取得良好的數(shù)學(xué)成績。

  綜上所述,高中數(shù)學(xué)學(xué)習(xí)重在培養(yǎng)學(xué)生思維邏輯能力,側(cè)重對學(xué)生學(xué)習(xí)方法的引導(dǎo),學(xué)生只有根據(jù)自己的實際情況,選擇適合自己的學(xué)習(xí)方法,靈活掌握數(shù)學(xué)知識,做到學(xué)以致用,才能使數(shù)學(xué)學(xué)習(xí)變得輕而易舉。

高中數(shù)學(xué)學(xué)習(xí)方法4

  1、先看筆記,后做作業(yè)

  有的學(xué)生認(rèn)為老師講過的,自己已經(jīng)聽得明明白白了,但是為什么自己一做題就困難重重了呢其原因在于,學(xué)生對老師所講內(nèi)容的理解還沒能達(dá)到教師所要求的層次。

  因此,在做作業(yè)之前,一定要把課本的有關(guān)內(nèi)容和當(dāng)天的課堂筆記先看一看。

  2、做題之后加強反思

  學(xué)生要把自己做過的每道題加以反思,弄明白題目的解題思路與方法,總結(jié)一下自己的收獲。

  要總結(jié)出:這是一道什么內(nèi)容的題,用的是什么方法。做到知識成片,問題成串;逐漸構(gòu)建起一個科學(xué)的網(wǎng)絡(luò)系統(tǒng)。

  還要看看自己做對了沒有;還有什么別的解法;題目處于知識體系中的什么位置;解法的本質(zhì)是什么;題目中的已知與所求能否互換,能否進(jìn)行適當(dāng)增刪改進(jìn)。

  3、主動復(fù)習(xí)和總結(jié)

  做章節(jié)總結(jié)是非常重要的。怎樣做章節(jié)總結(jié)呢

  ①要把課本、筆記、單元測試卷等都從頭到尾閱讀一遍。

 、诎颜鹿(jié)的內(nèi)容一分為二,一部分是基礎(chǔ)知識,一部分是典型問題。要把對技能的要求,列進(jìn)這兩部分中的一部分,不要遺漏。

  ③在基礎(chǔ)知識的疏理中,要羅列出所學(xué)知識的所有定義、定理、法則、公式,做到三會兩用。

  ④把重要的、典型的各種問題進(jìn)行編隊。

 、菘偨Y(jié)那些尚未歸類的問題,作為備注進(jìn)行補充說明。

  4、重視改錯,錯不重犯

  一定要重視改錯工作,做到錯不再犯。

  5、積累資料,隨時整理

  要注意積累復(fù)習(xí)資料。把課堂筆記、練習(xí)、各類單元測驗、各種試卷,都分門別類按時間順序整理好。每讀一次,就在上面標(biāo)記出自己下次閱讀時需要注意的重點內(nèi)容,一目了然。

  6、精挑慎選課外讀物

  高中數(shù)學(xué)考的是學(xué)生解決新題的能力。作為一名高中生,如果只是圍著自己的老師轉(zhuǎn),不論老師的水平有多高,必然都會存在著很大的局限性。因此,要想學(xué)好數(shù)學(xué),必須打開一扇門,看看外面的世界。當(dāng)然,也不要自立門戶,另起爐灶。一旦脫離校內(nèi)教學(xué)和老師的教學(xué)體系,也必將事倍功半。

  7、配合老師,主動學(xué)習(xí)

  高中生必須提高學(xué)習(xí)的主動性,準(zhǔn)備向?qū)淼拇髮W(xué)生學(xué)習(xí)方法過渡。

  8、合理規(guī)劃,步步為營

  高中的學(xué)習(xí)是非常緊張的,每個學(xué)生都要投入幾乎全部的精力。要想迅速進(jìn)步,就要給自己制定一個較長遠(yuǎn)的切實可行的學(xué)習(xí)目標(biāo)和計劃。此外,還要詳細(xì)地安排好自己的零星時間,并及時作出合理的微量調(diào)整。

  學(xué)習(xí)數(shù)學(xué)的方法和思想技巧

  1,特殊值法

  2,數(shù)形結(jié)合的思想

  3,反證法

  4,數(shù)學(xué)歸納法

  5,方程思想

  6,建模的思想(舉一反三)

  7,極限思想

  8,待定系數(shù)法

  一、課內(nèi)重視聽講,課后及時復(fù)習(xí)理解。(認(rèn)真聽講真的很重要)

  新知識的接受,數(shù)學(xué)能力的.培養(yǎng)主要在課堂上進(jìn)行,所以要特點重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時要緊跟老師的思路,積極展開思維預(yù)測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識和基本技能的學(xué)習(xí),課后要及時復(fù)習(xí)不留疑點。首先要在做各種習(xí)題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不采用不清楚立即翻書之舉。認(rèn)真獨立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問的學(xué)習(xí)作風(fēng),對于有些題目由于自己的思路不清,一時難以解出,應(yīng)讓自己冷靜下來認(rèn)真分析題目,盡量自己解決。在每個階段的學(xué)習(xí)中要進(jìn)行整理和歸納總結(jié),把知識的點、線、面結(jié)合起來交織成知識網(wǎng)絡(luò),納入自己的知識體系。

  二、適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣。(習(xí)慣成自然)

  要想學(xué)好數(shù)學(xué),多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運用自如。實踐證明:越到關(guān)鍵時候,你所表現(xiàn)的解題習(xí)慣與平時練習(xí)無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養(yǎng)成良好的解題習(xí)慣是非常重要的

  三、調(diào)整心態(tài),正確對待考試。(心態(tài)決定成。

  首先,應(yīng)把主要精力放在基礎(chǔ)知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎(chǔ)性的題目,而對于那些難題及綜合性較強的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠(yuǎn)鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。

  在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開,切忌考前去做太難的題目。在保證正確率的前提下提高解題速度。對于一些容易的基礎(chǔ)題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學(xué)會嘗試得分,使自己的水平正常甚至超常發(fā)揮。

  由此可見,要把數(shù)學(xué)學(xué)好就得找到適合自己的學(xué)習(xí)方法,了解數(shù)學(xué)學(xué)科的特點,使自己進(jìn)入數(shù)學(xué)的廣闊天地中去。

  最后,還是要多練多問,多積累,而且要多總結(jié),數(shù)學(xué)是一個見效很快的學(xué)科,只要努力成績很快就長上來了。

高中數(shù)學(xué)學(xué)習(xí)方法5

  課前預(yù)習(xí)

  一個老生常談的話題,也是提到學(xué)習(xí)方法必將的一個,話雖老,雖舊,但仍然是不得不提。雖然大家都明白該這樣做,但是真正能夠做到課前預(yù)習(xí)的能有幾人,課前預(yù)習(xí)可以使我們提前了解將要學(xué)習(xí)的知識,不至于到課上手足無措,加深我們聽課時的理解,從而能夠很快的吸收新知識。

  記筆記

  這里主要指的是課堂筆記,因為每節(jié)課的時間有限,所以老師將的東西一般都是精華部分,因此很有必要把它們記錄下來,一來可以加深我們的理解,好記性不如爛筆頭嗎,二來可以方便我們以后復(fù)習(xí)查看。如果對課堂講述的知識不理解的同學(xué)更應(yīng)該做筆記,以便課下細(xì)細(xì)琢磨,直到理解為止。

  課后復(fù)習(xí)

  同預(yù)習(xí)一樣,是個老生常談的話題,但也是行之有效的方法,課堂的'幾十分鐘不足以使我們學(xué)習(xí)和消化所學(xué)知識,需要我們在課下進(jìn)行大量的練習(xí)與鞏固,才能真正掌握所學(xué)知識。

  涉獵課外習(xí)題

  想要在數(shù)學(xué)中有所建樹,取得好成績,光靠課本上的知識是遠(yuǎn)遠(yuǎn)不夠的,因此我們需要多多涉獵一些課外習(xí)題,學(xué)習(xí)它們的解題思路和方法,如果實在不能理解,可以問問老師或者同學(xué)。

  學(xué)會歸類總結(jié)

  學(xué)習(xí)數(shù)學(xué)要記得東西很多,尤其是數(shù)學(xué)公式,而且知識還很散,通常解一道題需要各種公式的配合,如果單純的記憶每個公式,不但增加記憶量,而且容易忘,此時我們必須學(xué)會歸類總結(jié),把經(jīng)常搭配使用的公式等總結(jié)在一起記憶,這樣會大大的減少我們的記憶量,同時提高我們做題效率。

  建立糾錯本

  我們在學(xué)習(xí)數(shù)學(xué)的時候可能會經(jīng)常因為同樣一類題目而失分,自己也十分懊惱,其實有辦法可以解決這個問題,就是建立糾錯本,幫我們經(jīng)常會出錯的題目都集中在一起(當(dāng)然只要是做錯過得都可以記錄上),然后空閑的時候看看,考試之前再看看,這樣考試的時候出現(xiàn)同類題目再出錯的幾率就降低好多。

  寫考試總結(jié)

  寫考試總結(jié)是一個好習(xí)慣,考試總結(jié)可以幫我們找出學(xué)習(xí)之中不足之處,以及我們知識的薄弱環(huán)節(jié),從而及時的彌補不足,以及以后的學(xué)習(xí)方向。

高中數(shù)學(xué)學(xué)習(xí)方法6

  1、一本書

  就是教科書,這是基礎(chǔ)的基礎(chǔ),但是被中等生最忽視的。筆者高中時,先看教科書再做題,所以往往同學(xué)做到第5題,我才剛開始,但當(dāng)我做了20題時,反過來發(fā)現(xiàn)同學(xué)做到第17題,這就是磨刀不誤砍柴工。最后不僅省時,而且比同學(xué)多鞏固了書本知識,然后從書本原理到題目及從題目到原理走了一個來回,培養(yǎng)了以理論解決實際問題的能力,提高了以不變應(yīng)萬變的能力。一句話,省時又高效。為擺脫題海打下了基礎(chǔ)。

  2、兩方法

  1)找到已知與求解的“橋梁”。主要針對中等題及難題,利用已知,推一步或幾步,完成轉(zhuǎn)化,從求解往后推幾步,看看還缺什么,再去回憶腦袋里的`知識點及解過的經(jīng)典題,把已知與求解的差距補上,這個就是“橋梁”原理。

  2)有些題按上述方法還遇到困難,可能需要另辟蹊徑,如從定義出發(fā)或需要再審視已知條件,可能還未用盡已知條件或有些暗含的已知條件未挖掘出來。

  3、三步驟

  1)先看教科書,真正搞懂課本例題,并做課后練習(xí)(雖然看上去很簡單,但是實質(zhì)上就是要你檢查自己是否真的掌握這些基本知識點。),

  2)利用歷年高考真題, 這些題很有價值,先掩著答案,根據(jù)你之前課本學(xué)的基礎(chǔ)內(nèi)容,嘗試自己親自動手做一下,再對答案,明白其原理,真正弄懂它,看看能否舉一反三,可問老師及同學(xué),也可請家教,最后達(dá)到觸類旁通。

  3)同步練習(xí),必須緊跟課程,不能賴下來的,一步一個腳印去做。

  數(shù)學(xué)知識點較多,容易忘記,但以上的步驟你都能做到的話,那么就不那么容易遺忘,即使忘記,你也可以翻閱以前的內(nèi)容重新鞏固一遍。

  4、四層次

  1)基本知識點。含概念、定義、定理、公式等,這是基礎(chǔ),這個不過關(guān),其他免談。筆者平時先看教科書,就是這個道理。--這部分,雖然重要,但筆者輔導(dǎo)不作重點,只是檢查與提醒,因為可自學(xué)及問自己老師同學(xué)。會這個的人太容易找到了。

  2)數(shù)學(xué)思想與數(shù)學(xué)技能。數(shù)學(xué)思想如方程函數(shù)思想、數(shù)形結(jié)合思想、對稱思想、分類討論思想,化歸思想;數(shù)學(xué)技能如配方、待定系數(shù)法等。筆者由于這方面強,故多年不做題或見到陌生題均不慌,因為這些思想能力是深入骨髓的。

  3)數(shù)學(xué)模型與中間結(jié)論。數(shù)學(xué)模型就是具體題目的解題套路,中間結(jié)論可使學(xué)生減少解題步驟,加快解題速度,減少出錯機會。這些有了2數(shù)學(xué)思想與數(shù)學(xué)技能,就能自己推導(dǎo)出來,但要注意總結(jié)與積累。

  4)特殊解題技巧。這個要求以上3方面都較強,聰明加靈感,平時善于總結(jié)與歸納,看透事物本源,熟能生巧,觸類旁通。故對中等生不作過高要求,所謂可遇而不可求。筆者對高考實考試卷的選擇與填空,特別是選擇,有相當(dāng)部分,有的試卷甚至一半以上可在題讀完后,幾秒得出正確答案。憑的就是這個本事。

高中數(shù)學(xué)學(xué)習(xí)方法7

  高中數(shù)學(xué)學(xué)習(xí)方法指導(dǎo)

  數(shù)學(xué)學(xué)習(xí)方法很多,有從過程上講的學(xué)習(xí)方法,也有從教學(xué)內(nèi)容上講的學(xué)習(xí)方法,根據(jù)新課程新理念,我著重從學(xué)習(xí)的情感態(tài)度方法;思想上能力上與大家共同交流共同進(jìn)步。

  一 數(shù)學(xué)學(xué)習(xí)情感態(tài)度

  數(shù)學(xué)已成為公民所必須具備的一種基本素質(zhì)。數(shù)學(xué)在人類思維的過程中發(fā)揮著獨特的、不可替代的作用。有人這樣形容數(shù)學(xué):“數(shù)學(xué)是思維的體操,智慧的火花”。數(shù)學(xué)使人聰明,嚴(yán)謹(jǐn);我們需要數(shù)學(xué),我們欣賞數(shù)學(xué)。但很多同學(xué)進(jìn)入高中階段,對數(shù)學(xué)學(xué)習(xí)很不適應(yīng),成績下降,很重要的一點是不能很快改變舊的思維方法和學(xué)習(xí)方法,去適應(yīng)新階段的學(xué)習(xí)。大部分同學(xué)形成了固定的學(xué)習(xí)方法和學(xué)習(xí)習(xí)慣,他們上課注意聽講,盡力完成老師布置的作業(yè)。但課堂上僅僅滿足于聽,缺乏積極思維;遇到難題不是動腦子思考,而是希望老師講解整個解題過程;不會科學(xué)地安排時間,缺乏自學(xué)的能力,還有人問有沒有一種神奇的學(xué)習(xí)方法,讓我們一看就懂,一學(xué)就會。大科學(xué)家愛因斯坦的兩句話,給了很好的回答:w(成功)=x(刻苦努力)+y(方法正確)+z(不說空話)。 “興趣是最好的老師!币簿褪钦f愛數(shù)學(xué),是學(xué)好數(shù)學(xué)的前提條件。

  (一)興趣是最好的老師

  興趣是能量的調(diào)節(jié)者,它的加入便發(fā)動了儲蓄在內(nèi)心的力量。據(jù)研究,如果一個學(xué)生對學(xué)習(xí)有興趣,積極性高,就能發(fā)揮其全部才能的80%-90%;否則只能發(fā)揮20%-30%。興趣能把精力集中到一點,其力量好比炸藥,立即把障礙炸得干干凈凈。興趣是獲取高效率學(xué)習(xí)方法的關(guān)鍵。也就是說學(xué)習(xí)的感情、態(tài)度是影響學(xué)習(xí)最關(guān)鍵的因素。對其所學(xué)習(xí)的知識具有濃厚的興趣,極大的熱情,并有一種我必須學(xué)好或?qū)W會這些知識和技能的決心,那么他在這種心里的驅(qū)使下將會不分晝夜,鍥而不舍,直到掌握這些知識和技能,使其心理得到滿意為止。也使他的學(xué)習(xí)更有成效。

 。ǘ⿺(shù)學(xué)是重要的,必須面對的

  可能有的同學(xué)會說:我可能對學(xué)習(xí)數(shù)學(xué)不十分感興趣,而是由于無可奈何的原因去學(xué)習(xí)的,而我也不可能會為不感興趣的東西去探索什么學(xué)習(xí)方法。其實這種態(tài)度是錯誤的。"數(shù)學(xué)是一切科學(xué)之母"、它是一門研究數(shù)與形的科學(xué),它無處不在。要掌握技術(shù),先要學(xué)好數(shù)學(xué),想攀登科學(xué)的高峰,更要學(xué)好數(shù)學(xué)。一個人在人生中肯定有他最感興趣的東西。但是為了讓自己過得滿意,他必須將他一生中不感興趣而又必須學(xué)習(xí)的東西盡快學(xué)會,盡可能高效的學(xué)會。這樣他才會有更多時間從事感興趣的事情。所以對不太感受興趣的東西但又必須學(xué)習(xí)的東西,我們也應(yīng)該去探索讓人滿意的方式和方法給予解決,以爭取早日脫離"苦海",盡快進(jìn)入興趣的海洋盡情遨游。

  (三)數(shù)學(xué)是有趣的,美麗的 激動人心的

  數(shù)學(xué)是自然的,不要害怕,如果聽懂一節(jié)課,掌握一種數(shù)學(xué)方法,解出一道數(shù)學(xué)難題,測驗得到好成績,平時老師對自己的鼓勵與贊賞等,都能使自己從這些"成功"中體驗到成功的喜悅,激發(fā)起更高的學(xué)習(xí)熱情。因此,在平時學(xué)習(xí)中,要多體會、多總結(jié),不斷從成功(那怕是微不足道的成績)中獲得愉悅,從而激發(fā)學(xué)習(xí)的熱情,提高學(xué)習(xí)的興趣。

  數(shù)學(xué)是美的,有趣的,激動人心的。要被數(shù)學(xué)本身的魅力所吸引;就如美味佳肴,憑它的色香味,使人油然升起強烈的向往。這才是學(xué)好數(shù)學(xué)的正道。

  二 、數(shù)學(xué)學(xué)習(xí)的科學(xué)理念與方法

  1理解 2參與 3 探究 4總結(jié)

 。ㄒ唬├斫-----學(xué)好數(shù)學(xué)的關(guān)鍵

  數(shù)學(xué)知識點不是孤立的,而是緊密聯(lián)系的;ハ嗦(lián)系在一起若干個數(shù)學(xué)知識點稱為數(shù)學(xué)知識結(jié)構(gòu)。數(shù)學(xué)學(xué)習(xí)就是在自己的頭腦中不斷建構(gòu)和完善的數(shù)學(xué)知識結(jié)構(gòu)的過程。數(shù)學(xué)學(xué)習(xí)的過程本質(zhì)上講就是理解數(shù)學(xué)知識及其聯(lián)系的過程。理解是數(shù)學(xué)學(xué)習(xí)的.核心。數(shù)學(xué)學(xué)習(xí)一定要把理解放在第一位,千方百計提高理解的層次。

  有這樣一種現(xiàn)象,有些同學(xué)表現(xiàn)在上課都聽懂,作業(yè)不會做;或即使做出來,老師批改后才知道有多處錯誤,這種現(xiàn)象被戲稱為“一聽就懂,一看就會,一做就錯”。其實質(zhì)就是對知識的一知半解。是表面孤立和膚淺的理解,是一種夾生飯。那么怎樣才算真正的理解呢?

  1、數(shù)學(xué)知識的理解要深入本質(zhì),注意抓住知識之間的聯(lián)系

  字面上的理解僅是第一層次,還必須弄清它和它以外事物的關(guān)聯(lián),本質(zhì)上融會貫通。從系統(tǒng)的角度去分析認(rèn)識它們了。如對數(shù)學(xué)概念要理解其形成過程,表示方法(文字語言,符號語言,圖形語言)要熟悉。重要的是理解它與其它概念的區(qū)別和聯(lián)系。

  2、了解知識產(chǎn)生的背景和作用

  通過知識的產(chǎn)生背景,理解知識的形成過程,掌握知識來龍去脈;培養(yǎng)觀察思考抽象概括提高問題與解決問題能力,增強數(shù)學(xué)應(yīng)用意識。

  例1:如函數(shù)的概念,認(rèn)真理解符號f對應(yīng)關(guān)系;可能是一個表達(dá)式,也可能是一個表格或圖像;從熟悉的實例背景出發(fā);如圓周長??2??,其對應(yīng)規(guī)律,周長是半徑的2?倍。珠海西區(qū)站數(shù)與票價關(guān)系是分段函數(shù)或表格式;氣溫與時間關(guān)系只能用列表或圖象表示。通過實例,必須到抽象的概念符號。函數(shù)是什么?函數(shù)是兩個變量間的對應(yīng)規(guī)律。包含定義域,對應(yīng)規(guī)律,值域三要素。f(x)中x表示自變量,f表示變量變化規(guī)律。f(x)=3x+5易求

  f(5),f(2m-1),f[g(x)]

  例2:聯(lián)系的觀點學(xué)概念理解概念:棱柱 棱錐 棱臺三種圖形,可從其中任意一種出發(fā),運用動的思想,演出其它兩種。

  例3:數(shù)列、一次函數(shù)、解析幾何中的直線幾個概念都可以用函數(shù)(特殊的對應(yīng))的概念來統(tǒng)一。又比如,數(shù)、方程、不等式、數(shù)列幾個概念也都可以統(tǒng)一到函數(shù)概念。要學(xué)習(xí)好數(shù)學(xué),必須準(zhǔn)確理解和掌握好基本概念、基本公式和基本性質(zhì),抓住這些基本知識的要點和適用范圍,這是學(xué)好數(shù)學(xué)的基礎(chǔ)之一,否則一切都無從談起,從目前的高考看,也很側(cè)重對這些基礎(chǔ)知識的考查,特別是一些簡答題,如果對某些基本概念不能準(zhǔn)確理解則很難正確作答。

  (二)主動參與

  參與數(shù)學(xué)活動又分為被動參與主動參與兩種形態(tài)。有的同學(xué)習(xí)慣于“以聽為主,力求聽懂”跟在老師后邊亦步亦趨;雖然參與但力度有限思維的創(chuàng)造性受到限制,學(xué)習(xí)是被動的。而應(yīng)該把老師講解作為一個因素,獨立思考,主動思考,創(chuàng)造性地進(jìn)行思維。力求自己解決。這種強烈的自主意識調(diào)動了積極性,所獲得的感悟要豐富得多,深刻得多。主動參與要做到幾點。

  1、 學(xué)會讀數(shù)學(xué)書

  學(xué)會看目錄:預(yù)習(xí)時先學(xué)目錄和內(nèi)容提要,了解知識的大致內(nèi)容,然后再開始從頭學(xué)習(xí)各個組成部分,并在學(xué)習(xí)過程中要求自己把書本讀"厚",讀完后他以要求自己把書本讀"薄"。厚使他對書本的各個部分有了詳細(xì)的了解,薄使他對書本的整體和主旨有了更深刻的認(rèn)識。課本從預(yù)習(xí)到復(fù)習(xí)至少要仔仔細(xì)細(xì)地看4-5遍,基礎(chǔ)差的更要多看。預(yù)習(xí)中發(fā)現(xiàn)的難點,就是聽課的重點;對預(yù)習(xí)中遇到的沒有掌握好的有關(guān)的舊知識,可進(jìn)行補缺,以減少聽課過程中的困難;有助于提高思維能力,預(yù)習(xí)后把自己理解了的東西與老師的講解進(jìn)行比較、分析即可提高自己思維水平;預(yù)習(xí)還可以培養(yǎng)自己的自學(xué)能力。強調(diào)幾點

  例題要重讀:教材中的例題,是學(xué)習(xí)如何運用概念定理公式最一般的示范。閱讀時要作為重點。讀時要邊看邊想邊算,可先試著算算不出來,再看解答。這對提高解題能力大有益處。

  概念要精讀:正確理解和使用概念,是學(xué)好數(shù)學(xué)的前提。閱讀概念時一定要一字一句地仔細(xì)閱讀,把每一個字、每一個詞都要弄明白。精讀的精字,可以從兩層意思來理解:一是閱讀的時候要精細(xì),要非常認(rèn)真仔細(xì);二是總結(jié)的時候要精煉,不能啰嗦。力求把內(nèi)容吃透?磿^程中應(yīng)不斷向自己發(fā)問,多想想為什么。加深對概念定理的理解。

  要點應(yīng)巧讀:所謂巧讀,包括以下幾層意思。第一,學(xué)會點、劃、批、問。把關(guān)鍵的地方都“點”出來,把重點、公式和結(jié)論都“劃”出來,把自己的理解、質(zhì)疑和心得等用三言兩語“批”出來,把沒弄懂的地方都用問號“問”出來。第二,跳過障礙,先看下去。對一時看不懂的地方,不妨先跳過去,或許讀過后來的敘述,前面不懂的也就懂了。第三,不同的書比較著看。某一處不太明白,不妨看看別的參考書是怎么說的。各種書的敘述語言有深有淺,敘述角度有正有反,有時這么對比著一看,往往也就明白了七八分。

  2、學(xué)會上課---積極主動參與到課堂中來

  課堂上要做到三點:一要專心聽講:聽能使注意力集中,把老師講的關(guān)鍵性部分聽懂、聽會,聽的時候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應(yīng)適當(dāng)?shù)毓P記,領(lǐng)會課上老師的主要精神與意圖,知識的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法.積極思考問題。弄清講的內(nèi)容是什么?怎么分析?理由是什么?采用什么方法?還有什么疑問?只有這樣,才可能對教學(xué)內(nèi)容有所理解。

  3、 超前思維:一個概念要能從它的生活背景中提出來,自己能試著定義它,知道三種語言(文字語言符號或圖形語言)表示方式,一個命題定理、公式性質(zhì)寫出來,先試著去證明,例題試著分析,盡量超在老師講解前發(fā)現(xiàn)思路,做出結(jié)果解出它;學(xué)習(xí)過程中自己設(shè)想該得出什么結(jié)論了,下什么定義了?傊蠋熖釂柡,盡量超在老師講解前想出解決問題的途徑和方法.讓自己的思維走在老師的前面。這樣的結(jié)果,名詞,定理公式是自己定義推導(dǎo)出來的,自己概括數(shù)學(xué)概念、原理、法則等。身臨其境,理解就相當(dāng)深刻,掌握就牢固,保持高水平的數(shù)學(xué)思維活動,是在游泳中學(xué)習(xí)游泳。

  4、學(xué)會提問:“提出一個問題往往比解決一個問題更重要!币驗榻鉀Q一個問題,所應(yīng)用的知識是前人總結(jié)的,所需要的技能也是前人積累的,在解決問題的過程中有很深的模仿痕跡。而提出新的問題,卻需要有創(chuàng)造性,有想象力。在老師講解前,發(fā)現(xiàn)問題如一題多解,提出問題的變式創(chuàng)新推廣 ,培養(yǎng)學(xué)生的創(chuàng)新精神和實踐能力。

  總之:聽課時要耳到、眼到、心到、口到、手到;動腦、動筆、動口,全身心地投入課堂學(xué)習(xí),參與知識的形成過程,若能做到上述“五到”,精力高度集中,課堂所學(xué)的一切重要內(nèi)容便會在自己頭腦中留下深刻的印象。

  (三)學(xué)會記憶:記憶方法很多,年輕人要多記,只有記更多的知識,才會左右逢源,一呼百應(yīng),得心應(yīng)手。如等差數(shù)列求和公式有部分同學(xué)到現(xiàn)在記不了,可類比梯形求面積的方法發(fā)現(xiàn)規(guī)律,簡化記憶。

  例圖形法如y=ax (a>0,a≠1) ,a>0,以1為分類界點,當(dāng)a>1時,函數(shù)呈上升狀態(tài),當(dāng)a<1時,函數(shù)呈下降狀態(tài),由圖記性質(zhì)易如反掌。此外還有口訣法記 如2=1.41421可記為:意1思4意1思4而2已1

  直線分平面區(qū)域可記為:直線定界,點定域;三角公式:此外還有列表法聯(lián)想法等。

  三、反思探究

  勤于思考,善于思考,是對我們學(xué)習(xí)數(shù)學(xué)提出的最基本的要求。一般來說,探究要從以下幾方面探究思考。要盡力做到以下幾點。

  1、錯題疑難探究:.建立糾錯本或《備忘錄》:把平時容易出現(xiàn)錯誤的知識或推理記載下來,爭取做到找錯、析錯、改錯、防錯。整理易錯的題。你需要一個筆記本將做錯的題定期整理,定期復(fù)習(xí),除了典型例題,還需要重視自己出錯的題目。錯題大約可以分兩種:一種是自己根本不會做,因為太難了,沒有思路;另一種是自己會做,因為粗心而做錯。我覺得,最有價值的錯題是第二類。因為粗心也有許多種,我們也要分析它。為什么會錯?有哪些經(jīng)教訓(xùn)?下一階段怎樣學(xué)?

  2、問題解決探究:善于發(fā)現(xiàn)問題和提出問題,善于解決生活中的實際問題。

  3、同學(xué)交流合作探究:探討有關(guān)知識的重點、難點和一些容易混淆的問題。互相測評,相互交換出好的試卷,然后答題。進(jìn)行批改計分。然后大家一起針對錯題進(jìn)行研究分析,找出原因。分工組合共同探究某一數(shù)學(xué)實際問題;培養(yǎng)合作探究交流的能力。

  4、 注意應(yīng)用會寫學(xué)案、會寫小論文。

  教師教學(xué)要認(rèn)真?zhèn)湔n,寫教案,學(xué)生學(xué)習(xí)也可寫學(xué)案;通過寫學(xué)案培養(yǎng)自學(xué)能力。,通過學(xué)會寫小論文,培養(yǎng)創(chuàng)新意識。此外積極參與一切有益的學(xué)習(xí)實踐活動,如數(shù)學(xué)競賽、智力競賽等活動。

  例如1:求過點(0,1)而且與拋物線y2 =2x只有一個公共點的直線方程?

  一部分同學(xué)解成:設(shè)過點(0,1)的直線方程y=kx+1,聯(lián)立列方程組得 K=1 所求的直線方程是Y= X+1反思錯誤:是不是只有一條這樣的直線呢?這些同學(xué)就會獨立思考,自己去發(fā)現(xiàn)問題,忽視了直線斜率不存在的這種情況;應(yīng)包括K=0的情況。

  例如2: 數(shù)列求和方法探究:直接求和法, 轉(zhuǎn)化求和法,sn?11111?2?3?...?n?n; sn?a2?2a4?3a6?...?na2n 2482

  sn?1?22?32?42?52?62?...?n2?(n?1)2;裂項求和法,

  自然數(shù)方冪公式求和

  四、總結(jié)提高

 。ㄒ唬┘皶r復(fù)習(xí),做好一個單元學(xué)習(xí)與小結(jié)方法

  第一步深入理解它的各個概念,定理公式,并初步歸納,比較,編織系統(tǒng);站在新的高度,完善原來的系統(tǒng)。第二步,結(jié)合題目,歸納它們的應(yīng)用;總結(jié)解題思考方法。解包含更大范圍知識的綜合題,提高應(yīng)用水平,歸納解題思考方法。

 。ǘ┥朴诳偨Y(jié)數(shù)學(xué)思想與方法和解題規(guī)律

  學(xué)好高中數(shù)學(xué),需要我們從數(shù)學(xué)方法與思想高度來掌握它。善于總結(jié)應(yīng)用數(shù)學(xué)方法,如:換元法、待定系數(shù)、觀察與實驗,聯(lián)想與類比,比較與分類,分析與綜合,一般與特殊,抽象與概括等。數(shù)學(xué)思想是指處理數(shù)學(xué)問題時的觀點。它是一些哲理性觀點在數(shù)學(xué)中的體現(xiàn)如:分類討論思想,數(shù)形結(jié)合思想,運動思想,轉(zhuǎn)化思想,變換思想。解題方法上經(jīng)常進(jìn)行一題多解,一題多變,從多側(cè)面、多角度思考問題,挖掘問題的實質(zhì),總結(jié)解題規(guī)律。

 。ㄈ⿲W(xué)會做數(shù)學(xué)題

  做習(xí)題,是學(xué)好數(shù)學(xué)的必要過程,也是培養(yǎng)能力,發(fā)展素質(zhì)的重要環(huán)節(jié)。解答習(xí)題的過程,既檢查了數(shù)學(xué)概念,定理公式的理解是否準(zhǔn)確,又加深它們的理解和掌握;做題不是為了做出答案,而是達(dá)到更深的理解數(shù)學(xué)知識;訓(xùn)練應(yīng)用知識的能力。面對習(xí)題需要觀察它的特點,進(jìn)行分析,作出判斷。要想學(xué)好數(shù)學(xué),多做多想是必要的。怎樣做題呢?

  要打贏一場戰(zhàn)役,不可能只是勇猛沖殺、一不怕死二不怕苦就可以打贏的,必須制訂好事關(guān)全局的戰(zhàn)術(shù)和策略問題。解數(shù)學(xué)題時,要注意三點:

  1、題不在多,但求精彩:過少不好,過多也無必要。這有點像吃飯,吃不飽不好,但過飽會引起腸胃功能紊亂,連開始吃進(jìn)去的東西都不能消化;同時營養(yǎng)價值很低的食物吃很多,不如吃適量高營養(yǎng)的食物。選題本身應(yīng)無錯誤,復(fù)述性少選,要選綜合性強,充滿活力的題,有代表性題,不選對理解無價值無一般性的偏題怪題。

  2、講究做題方法:

 。1)一題多解,一題多變, 多解歸一。解題時舉一反三,善于發(fā)現(xiàn),有所進(jìn)步。

 。2)掌握分析法和綜合法去分析題:在解題過程中很多同學(xué)因為找不到思路常常無從下筆注意解題思維策略問題,綜合法是將已知條件列出來,看看能推出哪些結(jié)論,而這些結(jié)論又可以看作條件,再看看這些新的條件又能導(dǎo)出哪些新的結(jié)論;待逐漸熟練之后,往往能夠一眼就看中問題的關(guān)鍵,迅速找到突破口。

  分析法是從你要求的結(jié)果或需要證明的問題出發(fā),看看需要哪些條件才能得出所要的結(jié)果,而要得到這些條件,又需要哪些更多的條件。

  3、掌握解題的四步驟:

  1)審題:首先應(yīng)判斷問題屬哪一類,分清題目的條件和要求,已知是什么?未知是什么?條件是什么?結(jié)論是什么?從題目中還能挖掘出什么隱含條件?畫個草圖,引入適當(dāng)?shù)姆枴D壳八媾R的主要困難是什么?解題的前景如何?

  2)尋找解題途徑:方法有三種; 一種是由因?qū)ЧC合法;表述為“已知—可知—可知······最后達(dá)到結(jié)論。第二種執(zhí)果索因分析法;即結(jié)論—需知—需知—······“這樣層層追到已知條件全部有了為止。條件與結(jié)論之路打通了。第三種復(fù) 的題需要兩種方法兩頭擠。解題過程中要廣泛聯(lián)想,能聯(lián)想起有關(guān)的定理或公式?在進(jìn)入解決的過程中隨時要根據(jù)情況的發(fā)展或作調(diào)整,或修正原來的方向。

  3)準(zhǔn)確表達(dá):實現(xiàn)計劃 實現(xiàn)你的解題計劃并檢驗每一步驟。運算要求準(zhǔn)快簡辟便。證明你的每一步都是正確的。

  4)總結(jié)回顧拓廣: 檢查結(jié)果并檢驗其正確性。換一個方法做做這道題。嘗試把你的結(jié)果和方法用到其他問題上。注意反思提高綜合解題能力。

  例1:多變題:求數(shù)列的一個通項公式:

  1)1,3,5,。。。。 an=2n-1 (n?N)

  2)1,-3,5,-7,9。。。。 an?(2n?1)(?1)n?1,(n?N)

  1?(?1)n?1

  (2n?1) 3)1,0,5,0,9,。。。。出現(xiàn)1,-1,an?2

  例2:已知an是等比數(shù)列,an>0,a2a4+2a3a5+a4a6=25,那么a3+a5的值等于( A )(高考題)

  A5,B10 ,C15,D20 綜合法解:由已知推出未知選A

  數(shù)學(xué)不是靠老師教會的,而是在老師的引導(dǎo)下,靠自己主動的思維活動去獲取的。學(xué)習(xí)數(shù)學(xué)就要積極主動地參與學(xué)習(xí)過程,養(yǎng)成實事求是的科學(xué)態(tài)度,獨立思考、勇于探索的創(chuàng)新精神;正確對待學(xué)習(xí)中的困難和挫折,敗不餒,勝不驕,養(yǎng)成積極進(jìn)取,不屈不撓,耐挫折的優(yōu)良心理品質(zhì);日積月累,定有可觀的進(jìn)步;我們知道一條好的創(chuàng)業(yè)理念能挽救一個工廠,發(fā)展一個企業(yè)。同樣一條好的學(xué)習(xí)理念,能使一個學(xué)習(xí)受挫的同學(xué)從此走向成功。通過講座希望同學(xué)們在今后的學(xué)習(xí)中,掌握科學(xué)的學(xué)習(xí)方法,爭取更大的進(jìn)步,取得輝煌的成績。

高中數(shù)學(xué)學(xué)習(xí)方法8

  一、預(yù)習(xí)

  1、通覽教材,初步理解教材的基本內(nèi)容和思路。

  2、預(yù)習(xí)時如發(fā)現(xiàn)與新課相聯(lián)系的舊知識掌握得不好,則查閱和補習(xí)舊知識,給學(xué)習(xí)新知識打好牢固的基礎(chǔ)。

  3、在閱讀新教材過程中,要注意發(fā)現(xiàn)自己難以掌握和理解的地方,以便在聽課時特別注意。

  4、做好預(yù)習(xí)筆記。預(yù)習(xí)的結(jié)果要認(rèn)真記在預(yù)習(xí)筆記上,預(yù)習(xí)筆記一般應(yīng)記載教材的主要內(nèi)容、自己沒有弄懂需要在聽課著重解決的問題、所查閱的舊知識等。

  二、上課。

  1、課前準(zhǔn)備好上課所需的課本、筆記本和其他文具,并抓緊時間簡要回憶和復(fù)習(xí)上節(jié)課所學(xué)的內(nèi)容。

  2、要帶著強烈的求知欲上課,希望在課上能向老師學(xué)到新知識,解決新問題。

  3、上課時要集中精力聽講,上課鈴一響,就應(yīng)立即進(jìn)入積極的學(xué)習(xí)狀態(tài),有意識地排除分散注意力的各種因素。

  4、聽課要抬頭,眼睛盯著老師的一舉一動,專心致志聆聽老師的每一句話。要緊緊抓住老師的思路,注意老師敘述問題的邏輯性,問題是怎樣提出來的,以及分析問題和解決問題的方法步驟。

  5、如果遇到某一個問題或某個問題的一個環(huán)節(jié)沒有聽懂,不要在課堂上“鉆牛角尖”,而要先記下來,接著往下聽。不懂的問題課后再去鉆研或向老師請教。

  6、要努力當(dāng)課堂的主人。要認(rèn)真思考老師提出的每一個問題,認(rèn)真觀察老師的每一個演示實驗,大膽舉手發(fā)表自己的看法,積極參加課堂討論。

  7、要特別注意老師講課的開頭和結(jié)尾。老師的“開場白”往往是概括上節(jié)內(nèi)容,引出本節(jié)的新課題,并提出本節(jié)課的目的要求和要講述的中心問題,起著承上起下的作用。老師的課后總結(jié),往往是一節(jié)課的精要提煉和復(fù)習(xí)提示,是本節(jié)課的高度概括和總結(jié)。

  8、要養(yǎng)成記筆記的好習(xí)慣。是一邊聽一邊記,當(dāng)聽與記發(fā)生矛盾時,要以聽為主,下課后再補上筆記。記筆記要有重點,要把老師板書的知識提綱、補充的課外知識、典型題目的解題步驟和課堂上沒有聽懂的問題記下來,供課后復(fù)習(xí)時參考。

  三、作業(yè)。

  1、先看書后作業(yè),看書和作業(yè)相結(jié)合。只有先弄懂課本的基本原理和法則,才能順利地完成作業(yè),減少作業(yè)中的錯誤,也可以達(dá)到鞏固知識的目的。

  2、注意審題。要搞清題目中所給予的條件,明確題目的要求,應(yīng)用所學(xué)的知識,找到解決問題的途徑和方法。

  3、態(tài)度要認(rèn)真,推理要嚴(yán)謹(jǐn),養(yǎng)成“言必有據(jù)”的習(xí)慣。準(zhǔn)確運用所學(xué)過的定律、定理、公式、概念等。作業(yè)之后,認(rèn)真檢查驗算,避免不應(yīng)有的錯誤發(fā)生。

  4、作業(yè)要獨立完成。只有經(jīng)過自己動腦思考動手操作,才能促進(jìn)自己對知識的消化和理解,才能培養(yǎng)鍛煉自己的思維能力;同時也能檢驗自己掌握的`知識是否準(zhǔn)確,從而克服學(xué)習(xí)上的薄弱環(huán)節(jié),逐步形成扎實的基礎(chǔ)。

  5、認(rèn)真更正錯誤。作業(yè)經(jīng)老師批改后,要仔細(xì)看一遍,對于作業(yè)中出現(xiàn)的錯誤,要認(rèn)真改正。要懂得,出錯的地方,正是暴露自己的知識和能力弱點的地方。經(jīng)過更正,就可以及時彌補自己知識上的缺陷。

  6、作業(yè)要規(guī)范。解題時不要輕易落筆,要在深思熟慮后一次寫成,切忌寫了又改,改了又擦,使作業(yè)涂改過多。書寫要工整,解題步驟既要簡明、有條理,又要完整無缺。作業(yè)時,各科都有各自的格式,要按照各學(xué)科的作業(yè)規(guī)范去做。

  7、作業(yè)要保存好,定期將作業(yè)分門別類進(jìn)行整理,復(fù)習(xí)時,可隨時拿來參考。

  四、復(fù)習(xí)。

  1、當(dāng)天的功課當(dāng)天復(fù)習(xí),并且要同時復(fù)習(xí)頭一天學(xué)習(xí)和復(fù)習(xí)過的內(nèi)容,使新舊知識聯(lián)系起來。對老師講授的主要內(nèi)容,在全面復(fù)習(xí)的基礎(chǔ)上,抓住重點和關(guān)鍵,特別是聽課中存在的疑難問題更應(yīng)徹底解決。重點內(nèi)容要熟讀牢記,對基本要領(lǐng)和定律等能準(zhǔn)確闡述,并能真正理解它的意義;對基本公式應(yīng)會自行推導(dǎo),曉得它的來龍去脈;同時要搞清楚知識前后之間的聯(lián)系,注意總結(jié)知識的規(guī)律性。

  2、單元復(fù)習(xí)。在課程進(jìn)行完一個單元以后,要把全單元的知識要點進(jìn)行一次全面復(fù)習(xí),重點領(lǐng)會各知識要點之間的聯(lián)系,使知識系統(tǒng)化和結(jié)構(gòu)化。有些需要記憶的知識,要在理解的基礎(chǔ)上熟練地記憶。

  3、期中復(fù)習(xí)。期中考試前,要把上半學(xué)期學(xué)過的內(nèi)容進(jìn)行系統(tǒng)復(fù)習(xí)。復(fù)習(xí)時,在全面復(fù)習(xí)的前提下,特別應(yīng)著重弄清各單元知識之間的聯(lián)系。

  4、期末復(fù)習(xí)。期末考試前,要對本學(xué)期學(xué)過的內(nèi)容進(jìn)行系統(tǒng)復(fù)習(xí)。復(fù)習(xí)時力求達(dá)到“透徹理解、牢固掌握、靈活運用”的目的。

  5、假期復(fù)習(xí)。每年的寒假和暑假,除完成各科作業(yè)外,要把以前所學(xué)過的內(nèi)容進(jìn)行全面復(fù)習(xí),重點復(fù)習(xí)自己掌握得不太好的部分。這樣可以避免邊學(xué)邊忘,造成高三總復(fù)習(xí)時負(fù)擔(dān)過重的現(xiàn)象。

  6、在達(dá)到上面要求的基礎(chǔ)上,學(xué)有余力的同學(xué),可在老師的指導(dǎo)下,適當(dāng)閱讀一些課外參考書或做一些習(xí)題,加深對有關(guān)知識的理解和記憶。

  五、課外學(xué)習(xí)。

  1、可根據(jù)自己的學(xué)習(xí)情況,有目的地選擇學(xué)習(xí)內(nèi)容,原則是有利于鞏固基礎(chǔ)知識,彌補自己的學(xué)習(xí)弱點。

  2、可以根據(jù)自己的特長和愛好,選擇一些有關(guān)學(xué)科的課外讀物學(xué)習(xí)。

  3、課外閱讀一定要從自己的實際出發(fā),量力而行,寧可少而精,也不多而濫,切忌好高鶩遠(yuǎn)、貪多求全。

  六、考試。

  1、要正確對待考試?荚囀菣z查學(xué)生學(xué)習(xí)效果的一種方法,考得好,可以促進(jìn)自己進(jìn)一步努力學(xué)習(xí),考得不好,也可以促使自己認(rèn)真分析原因,找出存在的問題,以便今后更有針對性地學(xué)習(xí)。所以,考試并不可怕,絕不應(yīng)當(dāng)產(chǎn)生畏考心理,造成情緒緊張,影響水平的正常發(fā)揮。

  2、做好考試前的準(zhǔn)備工作。首先是對各科功課進(jìn)行系統(tǒng)認(rèn)真的復(fù)習(xí),這是考出好成績的基礎(chǔ)。另外,考試前和考試期間要注意勞逸結(jié)合,保證充足的睡眠和休息,保持充沛的精力,這是取得優(yōu)異成績的必要條件。

  3、答卷時應(yīng)注意的主要問題是:①認(rèn)真審題。拿到試卷后,對每一個題目要認(rèn)真閱讀,看清題目的要求,找出已知條件和要求的結(jié)論,然后再動手答題。②一時不會做的題目可以先放一放,等把會做的題目做完了,再去解決遺留問題。③仔細(xì)檢查,更正錯誤。試卷答完以后,如果還有時間,就要抓緊時間進(jìn)行檢查和驗證。先檢查容易的、省時間的、錯誤率高的題目,后檢查難的、費時間的、錯誤率低的題目。④卷面要整潔,書寫要工整,答題步驟要完整。

  4、重視考后分析。拿到老師批閱的試卷后,不僅要看成績,而且要對試題進(jìn)行逐一分析。首先要把錯題改正過來,把錯處鮮明地標(biāo)示出來,引起自己的注意,以便復(fù)習(xí)時查對。然后分析丟分的原因,并進(jìn)行分類統(tǒng)計?纯匆?qū)忣}、運算、表達(dá)、原理、思路、馬虎等因素各扣了多少分;經(jīng)過分析統(tǒng)計,找出自己學(xué)習(xí)上存在的問題。對做對了的題目也要進(jìn)行分析,檢查自己對題目的表達(dá)是否嚴(yán)密,解題方法是否簡便等。

  高中數(shù)學(xué)學(xué)習(xí)方法經(jīng)驗

  高中學(xué)習(xí)不是被動的學(xué)習(xí),老師教一步,學(xué)生跟一步。學(xué)生不僅僅跟住老師的教課步伐,還必須會自己學(xué)習(xí),要講究科學(xué)的學(xué)習(xí)方法。只有會學(xué)習(xí),才能提高學(xué)習(xí)效率,從而提高學(xué)習(xí)成績。學(xué)習(xí)方法不能照搬別人的,要自己培養(yǎng)挖掘,找到一個適合自己的學(xué)習(xí)方法。

  培養(yǎng)良好的學(xué)習(xí)習(xí)慣

  制定計劃明確學(xué)習(xí)目的,合理安排時間。計劃要符合實際,執(zhí)行過程中嚴(yán)格要求自己。課前預(yù)習(xí)可以培養(yǎng)自學(xué)能力,提高對學(xué)習(xí)新課的興趣,掌握學(xué)習(xí)主動。上課專心聽講是理解和掌握基本知識、基本方法的關(guān)鍵環(huán)節(jié),上課能夠把握重點,突破難點,上課要著手做筆記,做筆記要抓住重點。課后加強復(fù)習(xí)可以提升對基本概念的理解記憶。高質(zhì)量完成作業(yè)是對學(xué)習(xí)知識更進(jìn)一步提高。最后積極思考?xì)w納總結(jié),達(dá)到對知識全面系統(tǒng)掌握和認(rèn)識。通過培養(yǎng)良好的學(xué)習(xí)習(xí)慣,可以培養(yǎng)獨立學(xué)習(xí)能力,激發(fā)學(xué)習(xí)積極熱情。

  循序漸進(jìn),點滴積累

  數(shù)學(xué)學(xué)習(xí)是一個長期學(xué)習(xí)的過程,期間要不停學(xué)習(xí)新知識,同時也要鞏固舊知識的過程,決非一朝一夕可以完成的。同時成績也是一點一滴的積累,而不是突變式提高。高中時期為三年,要想能取得好成績,就要求同學(xué)們基本功扎實,閱讀、書寫、運算能力達(dá)到一個非常熟練的程度。知識點要慢慢積累,成績會逐步提高。取得一點成績不要驕傲自滿,停滯不前;遇到挫折也不要灰心喪氣,要繼續(xù)加強堅持學(xué)習(xí)。

  研究數(shù)學(xué)學(xué)科特點,尋找學(xué)習(xí)方法

  數(shù)學(xué)學(xué)科特點具有高度的抽象性、結(jié)論的確定性及應(yīng)用的廣泛性,要想學(xué)好數(shù)學(xué)必須具備運算能力、空間想象能力及邏輯思維能力。運用培養(yǎng)的能力對日產(chǎn)學(xué)習(xí)及工作中遇到的各種問題進(jìn)行分析、解決、總結(jié)。數(shù)學(xué)學(xué)習(xí)對綜合學(xué)習(xí)能力要求較高,學(xué)習(xí)數(shù)學(xué)一定要講究靈活,只動腦不動手不行,只做題不總結(jié)也不行,要二者結(jié)合才能學(xué)好數(shù)學(xué)。學(xué)習(xí)新知識既要能鉆進(jìn)去,又要能跳出來,結(jié)合自身特點,尋找學(xué)習(xí)方法。

  高中數(shù)學(xué)學(xué)習(xí)方法總結(jié)

  一、計算能力。

  高中涉及到更多的內(nèi)容,而計算是一項基本技能,對于初中時候的有理數(shù)的運算、二次根式的運算、實數(shù)的運算、整式和分式運算,代數(shù)式的變形等方面如果還存在問題,應(yīng)該把部分再好好復(fù)習(xí)鞏固一下。若計算頻頻出現(xiàn)問題,會成為高中學(xué)習(xí)的一個巨大的絆腳石。

  二、反思總結(jié)。

  很多同學(xué)進(jìn)入高中后都會在學(xué)法上遇到很大的困擾。因為高中知識多,授課時間短,難度大,所以初中時候的一些學(xué)習(xí)方法在高中就不太適用了。對于高中的知識,不能認(rèn)為“做題多了自然就會了”,因為到了高中沒有那么多時間來做題,因此一定要找到一種更有效地學(xué)習(xí)方法,那就是要在每次學(xué)習(xí)過后進(jìn)行總結(jié)和反思?偨Y(jié)知識點之間的聯(lián)系和區(qū)別,反思一下知識更深層的本質(zhì)。三、預(yù)習(xí)高一的知識。新課程標(biāo)準(zhǔn)的高一第一學(xué)期一般是講必修1和必修4兩本。目前高中采取模塊教學(xué),每個學(xué)期2個模塊。

  必修1的主要內(nèi)容是三部分:

  集合:數(shù)學(xué)中最基礎(chǔ),最通用的數(shù)學(xué)語言。貫穿整個高中以及現(xiàn)代數(shù)學(xué)都是以集合語言為基礎(chǔ)的。一定要學(xué)明白了。

  函數(shù):通過初中對具體函數(shù)的學(xué)習(xí),在其基礎(chǔ)上研究任意函數(shù)研究其性質(zhì),如單調(diào)性,奇偶性,對稱性,周期性等。這一部分相對有一定的難度,而且與初中的聯(lián)系比較緊;境醯群瘮(shù):指數(shù)和對數(shù)的運算以及利用前面學(xué)到的函數(shù)性質(zhì)研究指數(shù)函數(shù),對數(shù)函數(shù)和冪函數(shù)。這部分知識有新的計算,并且應(yīng)用前面的函數(shù)性質(zhì)學(xué)習(xí)新的函數(shù)。

  必修4的主要內(nèi)容也分為三部分:

  三角函數(shù):對于初中的角的概念進(jìn)行擴充,涉及到三角函數(shù)的運算以及三角函數(shù)的性質(zhì)。

  平面向量:這是數(shù)學(xué)里面一種新的常用的工具,通過向量的方法可以方便的解決很多三角函數(shù)的問題。這種方法與平面直角坐標(biāo)系的聯(lián)系比較多,但與函數(shù)有所不同,應(yīng)注意區(qū)別與聯(lián)系。

  三角恒等變換:這部分主要是三角的運算,屬于公式很多,運算量也比較大的內(nèi)容,高中化學(xué)。統(tǒng)觀上述高一第一學(xué)期的內(nèi)容可見知識非常多,而且這些知識在高考中的比重也比較大,因此若在高一一開始不能學(xué)好,對于后面的學(xué)習(xí)是會有一定影響的。因此,要考慮到初高中知識的差異,對自己的學(xué)法進(jìn)行改進(jìn),最后要適當(dāng)?shù)念A(yù)習(xí)一下新高一的內(nèi)容,以期很快的適應(yīng)高中的數(shù)學(xué)學(xué)習(xí)。

高中數(shù)學(xué)學(xué)習(xí)方法9

  學(xué)好高中數(shù)學(xué)的學(xué)習(xí)方法

  1、上課認(rèn)真聽、仔細(xì)做筆記

  學(xué)習(xí)新的知識首先得通過老師的講解,然后自己理解,這樣才能通過做題鞏固,不然上課不認(rèn)真聽的話,下課自己做題也不會,即使自己參照例題做出來了,也會有很多地方不理解,而且自己學(xué)還很浪費時間。所以高中的學(xué)生們一定不能輕視了上課老師講的內(nèi)容。

  再有一點就是數(shù)學(xué)也是需要記筆記的,上課的時候把老師講的書上沒有的步驟都記一下,重點的內(nèi)容該畫的畫,改寫的寫,千萬不要覺得現(xiàn)在看了一眼就記住了,要知道數(shù)學(xué)的知識從高一到高三會越來越難,前面的知識相當(dāng)于為后面做鋪墊,尤其是高三復(fù)習(xí)的時候。所以同學(xué)們在高一高二的時候老師講的重點的內(nèi)容一定要整理在筆記上,不然到了高三復(fù)習(xí)的時候忘記了又得浪費時間重新做筆記。

  2、以課本為主,把握課本去理解

  提高數(shù)學(xué)成績主要是靠聽課和做題來提高。老師講課的重點是課本,偶爾會延伸一下課外的知識,所以同學(xué)們在理解、學(xué)習(xí)的時候也要以課本為依據(jù),幫助自己學(xué)習(xí)。

  做題的時候首先把課本上的題做會了,再去做一些參考資料上面的難題。

  3、鍛煉邏輯思維能力

  學(xué)習(xí)數(shù)學(xué)如果邏輯思維能力不好的話,成績就很難提高。大家在做題的時候一定要多思考,訓(xùn)練自己的思維速度,提升思維能力。

  數(shù)學(xué)學(xué)習(xí)要學(xué)會獨立思考

  1、數(shù)學(xué)它是一門著重于理解的學(xué)科,一定要勤分析、多思考、多練習(xí),對學(xué)過的內(nèi)容和問題,要從正面、反面各個角度思考,要善于找出它們之間的聯(lián)系,總結(jié)出規(guī)律性的東西。

  2、不要一遇到不懂的問題就及時請教別人,要自己動腦子思考,不要過分依賴別人,經(jīng)過自己的努力,克服其中的困難,如果實在做不出來再向老師或別人請教,這樣對自己才有更大的幫助和鍛煉。

  如何學(xué)好數(shù)學(xué)

  首先你要有一個好的態(tài)度,有些人學(xué)習(xí)數(shù)學(xué),可能有的階段會喜歡學(xué)習(xí),但是某一階段,對數(shù)學(xué)就沒有什么興趣了,可能每個人都會有這樣一個階段,但是如果發(fā)現(xiàn)自己不喜歡學(xué)習(xí)數(shù)學(xué)了,一定要克制自己,在學(xué)習(xí)數(shù)學(xué)上,保持一個良好的學(xué)習(xí)態(tài)度,這是你學(xué)好數(shù)學(xué)的第一步。

  充分的利用好上課的時間,上課時間你所掌握的知識,會比你在課下學(xué)很長時間都有用,所以珍惜課堂老師所講的內(nèi)容,老師的某些話對我們以后做數(shù)學(xué)題都很有幫助,如果你上課走神,這些話沒有聽到,你在做題的時候,可能會走很多彎路,做題的效率也會降低,一旦有這樣的`情況,可能你就會不喜歡數(shù)學(xué)了。

  學(xué)習(xí)最重要的是思考,會思考數(shù)學(xué)才能學(xué)好,數(shù)學(xué)中的題都是需要我們?nèi)ヅe一反三的,沒做一道題,都要思考一下,圍繞著這道題的知識點,還會有什么樣的題型出現(xiàn),哪怕是遇到不會的題,也要勤加的思考,如果你把知識點自認(rèn)為學(xué)習(xí)透徹,那么就用做題檢驗吧,數(shù)學(xué)中多做題是必須的,成績都是用題堆積出來的,很少會有人不做題數(shù)學(xué)成績很高的。

  學(xué)好數(shù)學(xué)的方法

  第一:做好預(yù)習(xí)。

  有的同學(xué)說預(yù)習(xí)不好的話,聽課就沒什么興趣了,或者看也看不明白,怎么學(xué)啊?其實預(yù)習(xí)只需要10-15分鐘就可以了,因為書上說的很簡單。預(yù)習(xí)完試著做做課后題,如果有課后題不會,那就是還有前面的知識點沒有看懂的,第二天上課的時候就要認(rèn)真聽了。第二天上完課后理解了老師所說,放學(xué)后必須認(rèn)真完成當(dāng)天的作業(yè)。然后繼續(xù)預(yù)習(xí)下一章節(jié),這樣循環(huán)下來,應(yīng)該有所收獲。

  第二:多做題。

  也許有人會說題海戰(zhàn)術(shù)是沒用的,又或者說太過功利性,但我們畢竟是面對高考,分?jǐn)?shù)在那一刻決定了一切,所以,必須多做題。

  第三:總結(jié)做題方法。

  光做題不總結(jié)肯定是不行的,要知道一道數(shù)學(xué)題可能有十幾,二十幾種解法,但我們需要的是最簡單的方法。如何去尋找這種方法,便是我們學(xué)數(shù)學(xué)的目的。想要養(yǎng)成這種方法就需要與同學(xué)們多交流與老師多溝通,學(xué)習(xí)他們的技巧方法,再化為己用。爭取用最短的時間考出最高的分?jǐn)?shù),這便是學(xué)習(xí)數(shù)學(xué)的秘籍。

  數(shù)學(xué)怎么才能學(xué)好

  抓住課堂。理科學(xué)習(xí)重在平日功夫,不適于突擊復(fù)習(xí)。

  高質(zhì)量完成作業(yè)。所謂高質(zhì)量是指高正確率和高速度。

  翻譯:把中文翻譯成為數(shù)學(xué)語言,包括:字母表示未知數(shù)、圖像表示函數(shù)式或幾何題目、概率語言等等。該方法常用于函數(shù),幾何以及不等式等題目。

  特殊化:在面對抽象或者難以理解的題目的時候,我們嘗試用最極端最特殊的數(shù)字來代替變量,幫助我們理解題目。該方法常用于在選擇題目中排除選項,在解大題的過程中也經(jīng)常會用到特殊化的結(jié)論。

  盯住目標(biāo):把目標(biāo)和已知結(jié)合,聯(lián)想相關(guān)的定理、定義、方法。在壓軸題目中,往往需要不斷轉(zhuǎn)化目標(biāo),即盯住目標(biāo)需要反復(fù)使用!

高中數(shù)學(xué)學(xué)習(xí)方法10

  1.審題與解題的關(guān)系

  有的考生對審題重視不夠,匆匆一看急于下筆,以致題目的條件與要求都沒有吃透,至于如何從題目中挖掘隱含條件、啟發(fā)解題思路就更無從談起,這樣解題出錯自然多。只有耐心仔細(xì)地審題,準(zhǔn)確地把握題目中的關(guān)鍵詞與量?如“至少”,“a>0”,自變量的取值范圍等 ,從中獲取盡可能多的信息,才能迅速找準(zhǔn)解題方向。

  2.“會做”與“得分”的`關(guān)系

  要將你的解題策略轉(zhuǎn)化為得分點,主要靠準(zhǔn)確完整的數(shù)學(xué)語言表述,這一點往往被一些考生所忽視,因此卷面上大量出現(xiàn)“會而不對”“對而不全”的情況,考生自己的估分與實際得分差之甚遠(yuǎn)。如立體幾何論證中的“跳步”,使很多人丟失1/3以上得分,代數(shù)論證中“以圖代證”,盡管解題思路正確甚至很巧妙,但是由于不善于把“圖形語言”準(zhǔn)確地轉(zhuǎn)譯為“文字語言”,得分少得可憐;再如去年理17題三角函數(shù)圖像變換,許多考生“心中有數(shù)”卻說不清楚,扣分者也不在少數(shù)。

  3.快與準(zhǔn)的關(guān)系

  只有“準(zhǔn)”才能得分,只有“準(zhǔn)”你才可不必考慮再花時間檢查,而“快”是平時訓(xùn)練的結(jié)果,不是考場上所能解決的問題,一味求快,只會落得錯誤百出。如去年第21題應(yīng)用題,此題列出分段函數(shù)解析式并不難,但是相當(dāng)多的考生在匆忙中把二次函數(shù)甚至一次函數(shù)都算錯,盡管后繼部分解題思路正確又花時間去算,也幾乎得不到分,這與考生的實際水平是不相符的。適當(dāng)?shù)芈稽c、準(zhǔn)一點,可得多一點分;相反,快一點,錯一片,花了時間還得不到分。

  4.難題與容易題的關(guān)系

  拿到試卷后,應(yīng)將全卷通覽一遍,一般來說應(yīng)按先易后難、先簡后繁的順序作答。近年來考題的順序并不完全是難易的順序,因此在答題時要合理安排時間,不要在某個卡住的題上打“持久戰(zhàn)”,那樣既耗費時間又拿不到分,會做的題又被耽誤了。這幾年,數(shù)學(xué)試題已從“一題把關(guān)”轉(zhuǎn)為“多題把關(guān)”,因此解答題都設(shè)置了層次分明的“臺階”,入口寬,入手易,但是深入難,解到底難,因此看似容易的題也會有“咬手”的關(guān)卡,看似難做的題也有可得分之處。所以考試中看到“容易”題不可掉以輕心,看到難題不要膽怯,冷靜思考、仔細(xì)分析,定能得到應(yīng)有的分?jǐn)?shù)。

高中數(shù)學(xué)學(xué)習(xí)方法11

  要把數(shù)學(xué)學(xué)好就得找到適合自己的學(xué)習(xí)方法,了解數(shù)學(xué)學(xué)科的特點,使自己進(jìn)入數(shù)學(xué)的廣闊天地中去。 下面,樸新小編給大家?guī)砀咧袛?shù)學(xué)學(xué)習(xí)方法和技巧。

  有意識培養(yǎng)自己的各方面能力

  數(shù)學(xué)能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想象能力和分析解決問題能力共五大能力。這些能力是在不同的數(shù)學(xué)學(xué)習(xí)環(huán)境中得到培養(yǎng)的。在平時學(xué)習(xí)中要注意開發(fā)不同的學(xué)習(xí)場所,參與一切有益的學(xué)習(xí)實踐活動,如數(shù)學(xué)第二課堂、數(shù)學(xué)競賽、智力競賽等活動。

  平時注意觀察,比如,空間想象能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,并在大腦中進(jìn)行分析推理。其它能力的培養(yǎng)都必須學(xué)習(xí)、理解、訓(xùn)練、應(yīng)用中得到發(fā)展。特別是,教師為了培養(yǎng)這些能力,會精心設(shè)計“智力課”和“智力問題”比如對習(xí)題的解答時的一題多解、舉一反三的訓(xùn)練歸類,應(yīng)用模型、電腦等多媒體教學(xué)等,都是為數(shù)學(xué)能力的培養(yǎng)開設(shè)的好課型,在這些課型中,學(xué)生務(wù)必要用全身心投入、全方位智力參與,最終達(dá)到自己各方面能力的全面發(fā)展。

  傳授科學(xué)的思想方法

  高中數(shù)學(xué)的學(xué)習(xí)不能滿足于盲目地在題海中奮戰(zhàn),更加不能就題來論題。特別是高中階段的數(shù)學(xué)學(xué)習(xí),要特別注重掌握數(shù)學(xué)的思想方法。數(shù)學(xué)思想方法如果按層次分,可分為數(shù)學(xué)一般方法、邏輯學(xué)數(shù)學(xué)方法與數(shù)學(xué)思想方法。其中,數(shù)學(xué)一般方法主要是數(shù)學(xué)解題的'具體方法及相關(guān)技能、技巧,比如高中數(shù)學(xué)里的配方法、換元法、待定系數(shù)法和判別式法等。邏輯學(xué)數(shù)學(xué)方法主要是指數(shù)學(xué)的思維方法,主要有分析法、綜合法、歸納法和試驗法等。數(shù)學(xué)思想方法主要有函數(shù)與方程思想、化歸思想及數(shù)形結(jié)合思想等。

  通過對數(shù)學(xué)解題過程中最富有特色的典型智力活動進(jìn)行分析和歸納,可以提煉出分析、解決數(shù)學(xué)問題的規(guī)律來,也就是要先弄清問題,再擬定解題計劃,接著實現(xiàn)解題計劃,最后進(jìn)行回顧這四個階段。在數(shù)學(xué)教學(xué)中,教師要把好審題關(guān)、計算關(guān)及數(shù)學(xué)表達(dá)關(guān),要求學(xué)生對概念、公式和定理等知識點進(jìn)行準(zhǔn)確記憶,并能牢固掌握,還要學(xué)會運用這些知識開展計算、證明和邏輯推理。只要把握高中數(shù)學(xué)學(xué)習(xí)的規(guī)律,掌握了學(xué)習(xí)的方法,無論遇到任何題目,都能迎刃而解。

高中數(shù)學(xué)學(xué)習(xí)方法12

  摘要:課本是考試內(nèi)容的載體,是高考命題的依據(jù),也是智能的生長點,是最有價值的資料,有相當(dāng)多的高考試題是課本中基本題目的直接引用或稍作變形得來的,其用意就是引導(dǎo)我們要重視基礎(chǔ),切實抓好“三基”(基礎(chǔ)知識、基本技能、基本方法)。最基礎(chǔ)的知識是最有用的知識,最基本的方法是最有用的方法。

  關(guān)鍵詞:知識,技能,方法

  近年來,數(shù)學(xué)復(fù)習(xí)資料名目繁多,許多教師過于依賴各類資料,在復(fù)習(xí)中忽視了書本中的基礎(chǔ)知識。這中做法實際上相當(dāng)于在復(fù)習(xí)中失去了基石,現(xiàn)談?wù)劚救说囊恍┛捶ā?/p>

  一、重視基礎(chǔ)知識、基本技能、基本方法

  課本是考試內(nèi)容的載體,是高考命題的依據(jù),也是智能的生長點,是最有價值的資料,有相當(dāng)多的高考試題是課本中基本題目的直接引用或稍作變形得來的,其用意就是引導(dǎo)我們要重視基礎(chǔ),切實抓好”三基”(基礎(chǔ)知識、基本技能、基本方法)。最基礎(chǔ)的知識是最有用的知識,最基本的方法是最有用的方法。在復(fù)習(xí)過程中,我們必須重視課本,夯實基礎(chǔ),以課本為主,重新全面地梳理知識,方法,注重知識結(jié)構(gòu)的重組與概括,揭示其內(nèi)在聯(lián)系與規(guī)律,從中提煉出思想方法。在知識的深化過程中,切忌孤立對待知識,方法,而應(yīng)自覺地將其前后聯(lián)系,縱橫比較、綜合,自覺地將新知識及時納入已有的知識系統(tǒng)中去,注意通用通法,淡化特殊技巧。

  近年來高考數(shù)學(xué)試題的新穎性,靈活性越來越強,不少學(xué)生把主要精力放在難度較大的綜合題上,認(rèn)為只有通過解決難題才能培養(yǎng)能力,因而忽視了基礎(chǔ)知識、基本技能、基本方法的復(fù)習(xí)。其實近幾年的高考命題已經(jīng)明確告訴我們:基礎(chǔ)知識、基本技能、基本方法始終是高考數(shù)學(xué)考查的重點。選擇題、填空題以及解答題中的基本常規(guī)題已達(dá)到整份試卷的80%左右,對基礎(chǔ)知識的要求也更高、更嚴(yán)了。如果我們在復(fù)習(xí)中過于粗疏,或在學(xué)習(xí)中對基礎(chǔ)知識不求甚解,都會導(dǎo)致在考試中判斷錯誤。其實定理、公式推證的過程就蘊涵著重要的解題方法和規(guī)律,如果沒有發(fā)掘其內(nèi)在的規(guī)律就去做題,試圖通過大量地做題去“悟”出某些道理,只會事倍功半。

  二、抓剛務(wù)本,落實教材

  數(shù)學(xué)復(fù)習(xí)任務(wù)重,時間緊,但決不能因此而脫離教材。相反,要緊扣大綱,抓住教材,在總體上把握教材,明確每一章、每一節(jié)的知識在整體中的地位、作用。

  近年來的試題都與教材有著密切的聯(lián)系,有的是直接利用教材中的例題、習(xí)題、公式定理的證明作為高考題;有的是將教材中的.題目略加修改、變形后作為高考題;還有的是將教材中的題目合理拼湊、組合作為高考題。因此,一定要高度重視教材,針對教材所要求的內(nèi)容和方法,把主要的精力放在教材的落實上,切忌刻意追求偏題、怪題和技巧過強的難題。

  學(xué)生對基礎(chǔ)知識和基本技能的理解與掌握是數(shù)學(xué)教學(xué)的基本要求,也是評價學(xué)生學(xué)習(xí)的基本內(nèi)容。高中數(shù)學(xué)中的基礎(chǔ)知識、基本技能主要包括②,基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,以及其中所蘊涵的數(shù)學(xué)思想和方法,和它們在后續(xù)學(xué)習(xí)中的作用。同時,還包括數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的一些基本過程。

  高中數(shù)學(xué)考試的內(nèi)容選取,要注重對數(shù)學(xué)本質(zhì)的理解和思想方法的把握,避免片面強調(diào)機械記憶、模仿以及復(fù)雜技巧。尤其要把握如下幾個要點:

  1、關(guān)于學(xué)生對數(shù)學(xué)概念、定理、法則的真正理解。尤其是,對數(shù)學(xué)的理解,至少包括能否獨立舉出一定數(shù)量的用于說明問題的正例和反例。

  2、關(guān)于不同知識之間的聯(lián)系和知識結(jié)構(gòu)體系。即高中數(shù)學(xué)考試應(yīng)關(guān)注學(xué)生能否建立不同知識之間的聯(lián)系,把握數(shù)學(xué)知識的結(jié)構(gòu)、體系。

  3、對數(shù)學(xué)基本技能的考試,應(yīng)關(guān)注學(xué)生能否在理解方法的基礎(chǔ)上,針對問題特點進(jìn)行合理選擇,進(jìn)而熟練運用。同時,注意數(shù)學(xué)語言具有精確、簡約、形式化等特點,適當(dāng)檢測學(xué)生能否恰當(dāng)?shù)剡\用數(shù)學(xué)語言及自然語言進(jìn)行表達(dá)與交流。

  三、加強通性通法的總結(jié)和運用

  在復(fù)習(xí)中應(yīng)淡化特殊技巧的訓(xùn)練,重視數(shù)學(xué)思想和方法的作用。常用的數(shù)學(xué)思想方法有:

  1、函數(shù)思想。中學(xué)數(shù)學(xué),特別是中學(xué)代數(shù),可謂是以函數(shù)為中心(綱)。集合的學(xué)習(xí),求函數(shù)的定義域和值域打下了基礎(chǔ);映射的引入,使函數(shù)的核心----對應(yīng)法則更顯現(xiàn)其本質(zhì);單調(diào)性、奇偶性、周期性的研究,是對映射更深入更細(xì)致的刻畫;函數(shù)與反函數(shù)的研究,辨證全面地看待事物之間的制約關(guān)系。數(shù)列可以看成是特殊的函數(shù)。解方程f(x)=0,就是求函數(shù)y=f(x)的零點;解不等式f(x)0或f(x)0,就是求函數(shù)y=f(x)取正值、負(fù)值的區(qū)間;函數(shù)極限的研究,導(dǎo)數(shù)、微分、積分的研究,也完全是以函數(shù)為對象,為中心的。一句話,抓住了函數(shù),就牽起中學(xué)代數(shù)的“牛鼻子”。

  2、數(shù)形結(jié)合思想。所謂數(shù)形結(jié)合,就是根據(jù)數(shù)與形之間的對應(yīng)關(guān)系,通過數(shù)與形的相互轉(zhuǎn)化來解決數(shù)學(xué)問題的思想,實現(xiàn)數(shù)形結(jié)合,常與以下內(nèi)容有關(guān):(1)實數(shù)與樹軸上的點的對應(yīng)關(guān)系;(2)函數(shù)與圖象的對應(yīng)關(guān)系;(3)曲線與方程的對應(yīng)關(guān)系;(4)以幾何元素和幾何條件為背景,建立起來的概念,如復(fù)數(shù)、三角函數(shù)等;(5)所給的等式或代數(shù)式的結(jié)構(gòu)含有明顯的幾何意義。

  數(shù)形結(jié)合的重點是“以形助數(shù)”。運用數(shù)形結(jié)合思想,不僅易直觀發(fā)現(xiàn)解題途徑,而且能避免復(fù)雜的計算與推理。大大簡化了解題過程。這在解選擇題、填空題中更顯其優(yōu)勢,要注意培養(yǎng)這種思想意識,要爭取做到“胸中有圖,見數(shù)想圖”,以開拓自己的思維視野。

  3、分類討論思想。所謂分類討論,就是當(dāng)問題所給的對象不能統(tǒng)一研究時,就需要對研究對象按某個標(biāo)準(zhǔn)分類,然后對每一類分別研究得出每一類的結(jié)論,最后綜合各類結(jié)果得到整個問題的答案。實質(zhì)上,分類討論是“化整為零,各個擊破,再積零為整”的數(shù)學(xué)策略。

  分類原則:分類的對象確定,標(biāo)準(zhǔn)統(tǒng)一,不重復(fù),不遺漏,分層次,不越級討論。

  分類方法:明確討論對象的全體,確定分類標(biāo)準(zhǔn),正確進(jìn)行分類;逐類進(jìn)行討論,獲取階段性成果;歸納小結(jié),綜合得出結(jié)論。

  4、轉(zhuǎn)化思想。將未知解法或難以解決的問題,通過觀察、分析、類比、聯(lián)想等思維過程,選擇運用恰當(dāng)?shù)臄?shù)學(xué)方法變換,化歸為在已知知識范圍內(nèi)已經(jīng)解決或容易解決的問題的思想叫做化歸與轉(zhuǎn)化的思想;瘹w與轉(zhuǎn)化的思想的實質(zhì)是揭示聯(lián)系,實現(xiàn)轉(zhuǎn)化。

  熟練、扎實地掌握基礎(chǔ)知識、基本技能和基本方法是轉(zhuǎn)化的基礎(chǔ);豐富的聯(lián)想、機敏的觀察、比較、類比是實現(xiàn)轉(zhuǎn)化的橋梁;培養(yǎng)訓(xùn)練自己自覺的化歸與轉(zhuǎn)化意識需要對定理、公式、法則有本質(zhì)上的深刻理解和對典型習(xí)題的總結(jié)和提煉,要積極主動有意識地去發(fā)現(xiàn)事物之間的本質(zhì)聯(lián)系。“抓基礎(chǔ),重轉(zhuǎn)化”是學(xué)好中學(xué)數(shù)學(xué)的金鑰匙。

  四、幫助學(xué)生打好基礎(chǔ),發(fā)展能力

  教師應(yīng)幫助學(xué)生理解和掌握數(shù)學(xué)基礎(chǔ)知識、基本技能,發(fā)展能力。具體來說:

  1、夯實基礎(chǔ)、加強概念教學(xué):歷年高考都有40%左右分值比重的試題綜合性較弱、難度較低、貼近教材,解答過程較為直觀且命題方式相對穩(wěn)定,用以考查學(xué)生基礎(chǔ)知識的掌握情況。有40%左右分值比重的試題綜合性較強,命題較為靈活,難度相對較高,用以考查學(xué)生的基本能力。知識是基礎(chǔ),能力的提高和知識的豐富是相互伴隨的過程,要意識到基礎(chǔ)知識的重要性,常規(guī)教學(xué)中一味求難求變的作法是不可取的,抓住基礎(chǔ)知識是全面提高教學(xué)質(zhì)量和高考成績的關(guān)鍵。數(shù)學(xué)科學(xué)建立在一系列概念的基礎(chǔ)之上,數(shù)學(xué)教學(xué)由概念開始,概念教學(xué)是基礎(chǔ)的基礎(chǔ)。數(shù)學(xué)具有高度抽象的特點,概念的形成是教學(xué)工作的難點。知識的發(fā)生發(fā)現(xiàn)過程是概念的形成過程,挖掘并精化知識的發(fā)生發(fā)現(xiàn)過程,直觀展現(xiàn)知識的發(fā)生背景和前人的思維過程,是概念教學(xué)的關(guān)鍵。數(shù)學(xué)學(xué)習(xí)要理解諸多的概念及概念間的關(guān)系,概念教學(xué)貫穿于數(shù)學(xué)教學(xué)工作的始終。探討概念間的關(guān)系,展示概念間的聯(lián)系,把諸多概念有機地串接起來,有利于加深學(xué)生對概念的理解,有利于“辯證、普遍聯(lián)系”的認(rèn)識觀念的形成,有利于探尋、解決問題能力的提高和數(shù)學(xué)思想方法的形成。

  2、強調(diào)對基本概念和基本思想的理解和掌握。教學(xué)中應(yīng)強調(diào)對基本概念的理解和掌握,對一些核心概念要貫穿高中數(shù)學(xué)教學(xué)的始終,幫助學(xué)生逐步加深理解。由于數(shù)學(xué)高度抽象的特點,注重體現(xiàn)基本概念的來龍去脈。在教學(xué)中要引導(dǎo)學(xué)生經(jīng)歷從具體實例抽象出數(shù)學(xué)概念的過程,在初步運用中逐步理解概念的本質(zhì)。

  3、重視基本技能的訓(xùn)練。熟練掌握一些基本技能,對學(xué)好數(shù)學(xué)是非常重要的。在高中數(shù)學(xué)課程中,要重視運算、作圖、推理、處理數(shù)據(jù)以及科學(xué)計算器的使用等基本技能訓(xùn)練。但應(yīng)注意避免過于繁雜和技巧性過強的訓(xùn)練。

  隨著時代和數(shù)學(xué)的發(fā)展,高中數(shù)學(xué)的基礎(chǔ)知識和基本技能也在發(fā)生變化。一些新的知識就需要添加進(jìn)來,原有的一些基礎(chǔ)知識也要用新的理念來組織教學(xué)。因此,教師要用新的觀點審視基礎(chǔ)知識和基本技能,并幫助學(xué)生理解和掌握數(shù)學(xué)基本知識、基本技能和基本思想。對一些核心概念和基本思想(如函數(shù)、空間觀念、數(shù)形結(jié)合、向量、導(dǎo)數(shù)、統(tǒng)計、隨機觀念、算法等)要在整個高中數(shù)學(xué)的教學(xué)中螺旋上升,讓學(xué)生多次接觸,不斷加深認(rèn)識和理解。在教學(xué)中要引導(dǎo)學(xué)生經(jīng)歷從具體實例抽象出數(shù)學(xué)概念的過程,在初步運用中逐步理解概念的本質(zhì),注重體現(xiàn)基本概念的來龍去脈。在新課程中,數(shù)學(xué)技能的內(nèi)涵也在發(fā)生變化,在教學(xué)中要重視運算、作圖、推理、數(shù)據(jù)處理、科學(xué)計算器和計算機的使用等基本技能訓(xùn)練,但應(yīng)注意避免過于繁雜和技巧性過強的訓(xùn)練。

高中數(shù)學(xué)學(xué)習(xí)方法13

  一、逐漸提高邏輯論證能力

  論證時,首先要保持嚴(yán)密性,對任何一個定義、定理及推論的理解要做到準(zhǔn)確無誤。符號表示與定理完全一致,定理的所有條件都具備了,才能推出相關(guān)結(jié)論。切忌條件不全就下結(jié)論。其次,在論證問題時,思考應(yīng)多用分析法,即逐步地找到結(jié)論成立的充分條件,向已知靠攏,然后用綜合法(“推出法”)形式寫出。

  二、立足課本,夯實基礎(chǔ)

  直線和平面這些內(nèi)容,是立體幾何的基礎(chǔ),學(xué)好這部分的一個捷徑就是認(rèn)真學(xué)習(xí)定理的證明,尤其是一些很關(guān)鍵的定理的證明。例如:三垂線定理。定理的內(nèi)容都很簡單,就是線與線,線與面,面與面之間的關(guān)系的闡述。但定理的證明在出學(xué)的時候一般都很復(fù)雜,甚至很抽象。掌握好定理有以下三點好處:

  (1)深刻掌握定理的內(nèi)容,明確定理的作用是什么,多用在那些地方,怎么用。

  (2)培養(yǎng)空間想象力。

  (3)得出一些解題方面的啟示。

  在學(xué)習(xí)這些內(nèi)容的時候,可以用筆、直尺、書之類的東西搭出一個圖形的框架,用以幫助提高空間想象力。對后面的學(xué)習(xí)也打下了很好的基礎(chǔ)。

  三、“轉(zhuǎn)化”思想的應(yīng)用

  我個人覺得,解立體幾何的問題,主要是充分運用“轉(zhuǎn)化”這種數(shù)學(xué)思想,要明確在轉(zhuǎn)化過程中什么變了,什么沒變,有什么聯(lián)系,這是非常關(guān)鍵的。例如:

  (1)兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線的夾角即過空間任意一點引兩條異面直線的平行線。斜線與平面所成的角轉(zhuǎn)化為直線與直線所成的角即斜線與斜線在該平面內(nèi)的射影所成的角。

  (2)異面直線的距離可以轉(zhuǎn)化為直線和與它平行的平面間的距離,也可以轉(zhuǎn)化為兩平行平面的距離,即異面直線的距離與線面距離、面面距離三者可以相互轉(zhuǎn)化。而面面距離可以轉(zhuǎn)化為線面距離,再轉(zhuǎn)化為點面距離,點面距離又可轉(zhuǎn)化為點線距離。

  (3)面和面平行可以轉(zhuǎn)化為線面平行,線面平行又可轉(zhuǎn)化為線線平行。而線線平行又可以由線面平行或面面平行得到,它們之間可以相互轉(zhuǎn)化。同樣面面垂直可以轉(zhuǎn)化為線面垂直,進(jìn)而轉(zhuǎn)化為線線垂直。

  (4)三垂線定理可以把平面內(nèi)的兩條直線垂直轉(zhuǎn)化為空間的兩條直線垂直,而三垂線逆定理可以把空間的兩條直線垂直轉(zhuǎn)化為平面內(nèi)的兩條直線垂直。

  以上這些都是數(shù)學(xué)思想中轉(zhuǎn)化思想的應(yīng)用,通過轉(zhuǎn)化可以使問題得以大大簡化。

  四、培養(yǎng)空間想象力

  為了培養(yǎng)空間想象力,可以在剛開始學(xué)習(xí)時,動手制作一些簡單的模型用以幫助想象。例如:正方體或長方體。在正方體中尋找線與線、線與面、面與面之間的關(guān)系。通過模型中的點、線、面之間的位置關(guān)系的觀察,逐步培養(yǎng)自己對空間圖形的想象能力和識別能力。其次,要培養(yǎng)自己的畫圖能力?梢詮暮唵蔚膱D形(如:直線和平面)、簡單的幾何體(如:正方體)開始畫起。最后要做的就是樹立起立體觀念,做到能想象出空間圖形并把它畫在一個平面(如:紙、黑板)上,還要能根據(jù)畫在平面上的“立體”圖形,想象出原來空間圖形的真實形狀。空間想象力并不是漫無邊際的`胡思亂想,而是以提設(shè)為根據(jù),以幾何體為依托,這樣就會給空間想象力插上翱翔的翅膀。

  五、總結(jié)規(guī)律,規(guī)范訓(xùn)練

  立體幾何解題過程中,常有明顯的規(guī)律性。例如:求角先定平面角、三角形去解決,正余弦定理、三角定義常用,若是余弦值為負(fù)值,異面、線面取銳角。對距離可歸納為:距離多是垂線段,放到三角形中去計算,經(jīng)常用正余弦定理、勾股定理,若是垂線難做出,用等積等高來轉(zhuǎn)換。不斷總結(jié),才能不斷高。

  還要注重規(guī)范訓(xùn)練,高考中反映的這方面的問題十分嚴(yán)重,不少考生對作、證、求三個環(huán)節(jié)交待不清,表達(dá)不夠規(guī)范、嚴(yán)謹(jǐn),因果關(guān)系不充分,圖形中各元素關(guān)系理解錯誤,符號語言不會運用等。這就要求我們在平時養(yǎng)成良好的答題習(xí)慣,具體來講就是按課本上例題的答題格式、步驟、推理過程等一步步把題目演算出來。答題的規(guī)范性在數(shù)學(xué)的每一部分考試中都很重要,在立體幾何中尤為重要,因為它更注重邏輯推理。對于即將參加高考的同學(xué)來說,考試的每一分都是重要的,在“按步給分”的原則下,從平時的每一道題開始培養(yǎng)這種規(guī)范性的好處是很明顯的,而且很多情況下,本來很難答出來的題,一步步寫下來,思維也逐漸打開了。

  六、典型結(jié)論的應(yīng)用

  在平時的學(xué)習(xí)過程中,對于證明過的一些典型命題,可以把其作為結(jié)論記下來。利用這些結(jié)論可以很快地求出一些運算起來很繁瑣的題目,尤其是在求解選擇或填空題時更為方便。對于一些解答題雖然不能直接應(yīng)用這些結(jié)論,但其也會幫助我們打開解題思路,進(jìn)而求解出答案。

高中數(shù)學(xué)學(xué)習(xí)方法14

  一、“棄重求輕”,培養(yǎng)興趣:女生數(shù)學(xué)能力的下降,環(huán)境因素及心理因素不容忽視。目前社會、家庭、學(xué)校對學(xué)生的期望值普遍過高。而女生性格較為文靜、內(nèi)向,心理承受能力較差,加上數(shù)學(xué)學(xué)科難度大,因此導(dǎo)致她們的數(shù)學(xué)學(xué)習(xí)興趣淡化,能力下降。

  二、“笨鳥先飛”,強化預(yù)習(xí):要提高課堂學(xué)習(xí)過程中的數(shù)學(xué)能力,課前的預(yù)習(xí)至關(guān)重要。教學(xué)中,要有針對性地指導(dǎo)女生課前的預(yù)習(xí),可以編制預(yù)習(xí)提綱,對抽象的概念、邏輯性較強的推理、空間想象能力及數(shù)形結(jié)合能力要求較高的內(nèi)容,要求通過預(yù)習(xí)有一定的了解,便于聽課時有的放矢,易于突破難點。認(rèn)真預(yù)習(xí),還可以改變心理狀態(tài),變被動學(xué)習(xí)為主動參與。

  三、“開門造車”,注重方法。

  教師要指導(dǎo)女生“開門造車”,讓她們暴露學(xué)習(xí)中的問題,有針對地指導(dǎo)聽課,強化雙基訓(xùn)練,對綜合能力要求較高的問題,指導(dǎo)她們學(xué)會利用等價轉(zhuǎn)換、類比、化歸等數(shù)學(xué)思想,將問題轉(zhuǎn)化為若干基礎(chǔ)問題,還可以組織她們學(xué)習(xí)他人成功的'經(jīng)驗,改進(jìn)學(xué)習(xí)方法,逐步提高能力。

  四、“揚長補短”,增加自信:教學(xué)中要注意發(fā)揮女生的長處,增加其自信心,使其有正視挫折的勇氣和戰(zhàn)勝困難的決心。特別要針對女生的弱點進(jìn)行教學(xué),多講通解通法和常用技巧,注意速度訓(xùn)練,分析問題既要“由因?qū)Ч,也要“?zhí)果索因”,暴露過程,激活思維;注重數(shù)形結(jié)合,適當(dāng)增加直觀教學(xué),訓(xùn)練作圖能力,培養(yǎng)想象力;揭示實際問題的空間形式和數(shù)量關(guān)系,培養(yǎng)“建模”能力。

高中數(shù)學(xué)學(xué)習(xí)方法15

  1、首先是精選題目,做到少而精。

  只有解決質(zhì)量高的、有代表性的題目才能達(dá)到事半功倍的效果。然而絕大多數(shù)的同學(xué)還沒有辨別、分析題目好壞的能力,這就需要在老師的指導(dǎo)下來選擇復(fù)習(xí)的練習(xí)題,以了解高考題的形式、難度。

  2、其次是分析題目。

  解答任何一個數(shù)學(xué)題目之前,都要先進(jìn)行分析。相對于比較難的題目,分析更顯得尤為重要。我們知道,解決數(shù)學(xué)問題實際上就是在題目的已知條件和待求結(jié)論中架起聯(lián)系的橋梁,也就是在分析題目中已知與待求之間差異的基礎(chǔ)上,化歸和消除這些差異。當(dāng)然在這個過程中也反映出對數(shù)學(xué)基礎(chǔ)知識掌握的熟練程度、理解程度和數(shù)學(xué)方法的靈活應(yīng)用能力。例如,許多三角方面的題目都是把角、函數(shù)名、結(jié)構(gòu)形式統(tǒng)一后就可以解決問題了,而選擇怎樣的三角公式也是成敗的關(guān)鍵。

  3、最后,題目總結(jié)。

  解題不是目的,我們是通過解題來檢驗我們的學(xué)習(xí)效果,發(fā)現(xiàn)學(xué)習(xí)中的不足的,以便改進(jìn)和提高。因此,解題后的總結(jié)至關(guān)重要,這正是我們學(xué)習(xí)的大好機會。對于一道完成的題目,有以下幾個方面需要總結(jié):

 、僭谥R方面,題目中涉及哪些概念、定理、公式等基礎(chǔ)知識,在解題過程中是如何應(yīng)用這些知識的。

 、谠诜椒ǚ矫妫喝绾稳胧值模玫搅四男┙忸}方法、技巧,自己是否能夠熟練掌握和應(yīng)用。

 、勰懿荒馨呀忸}過程概括、歸納成幾個步驟(比如用數(shù)學(xué)歸納法證明題目就有很明顯的三個步驟)。

  ④能不能歸納出題目的類型,進(jìn)而掌握這類題目的解題通法(我們反對老師把現(xiàn)成的題目類型給學(xué)生,讓學(xué)生拿著題目套類型,但我們鼓勵學(xué)生自己總結(jié)、歸納題目類型)。

  高中數(shù)學(xué)導(dǎo)數(shù)的定義,公式及應(yīng)用總結(jié)

  導(dǎo)數(shù)的定義:

  當(dāng)自變量的增量Δx=x-x0,Δx→0時函數(shù)增量Δy=f(x)- f(x0)與自變量增量之比的極限存在且有限,就說函數(shù)f在x0點可導(dǎo),稱之為f在x0點的導(dǎo)數(shù)(或變化率)、

  函數(shù)y=f(x)在x0點的導(dǎo)數(shù)f'(x0)的幾何意義:表示函數(shù)曲線在P0[x0,f(x0)]點的切線斜率(導(dǎo)數(shù)的幾何意義是該函數(shù)曲線在這一點上的切線斜率)。

  一般地,我們得出用函數(shù)的導(dǎo)數(shù)來判斷函數(shù)的增減性(單調(diào)性)的法則:設(shè)y=f(x )在(a,b)內(nèi)可導(dǎo)。如果在(a,b)內(nèi),f'(x)>0,則f(x)在這個區(qū)間是單調(diào)增加的`(該點切線斜率增大,函數(shù)曲線變得“陡峭”,呈上升狀)。如果在(a,b)內(nèi),f'(x)<0,則f(x)在這個區(qū)間是單調(diào)減小的。所以,當(dāng)f'(x)=0時,y=f(x )有極大值或極小值,極大值中最大者是最大值,極小值中最小者是最小值

  求導(dǎo)數(shù)的步驟:

  求函數(shù)y=f(x)在x0處導(dǎo)數(shù)的步驟:

 、偾蠛瘮(shù)的增量Δy=f(x0+Δx)-f(x0)

 、谇笃骄兓

 、廴O限,得導(dǎo)數(shù)。

  導(dǎo)數(shù)公式:

 、 C'=0(C為常數(shù)函數(shù));

 、 (x^n)'= nx^(n-1) (n∈Q___);熟記1/X的導(dǎo)數(shù);

 、 (sinx)' = cosx;(cosx)' = - sinx;(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx (cscx)'=-cotx·cscx (arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (arcsecx)'=1/(x(x^2-1)^1/2) (arccscx)'=-1/(x(x^2-1)^1/2) ④ (sinhx)'=hcoshx (coshx)'=-hsinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2 (sechx)'=-tanhx·sechx (cschx)'=-cothx·cschx (arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2 (artanhx)'=1/(x^2-1) (x<1) xlna="" 、="">0,那么函數(shù)y=f(x)在這個區(qū)間內(nèi)單調(diào)遞增;如果f'(x)<0,那么函數(shù)y=f(x)在這個區(qū)間內(nèi)單調(diào)遞減,="">0是f(x)在此區(qū)間上為增函數(shù)的充分條件,而不是必要條件,如f(x)=x3在R內(nèi)是增函數(shù),但x=0時f'(x)=0。也就是說,如果已知f(x)為增函數(shù),解題時就必須寫f'(x)≥0。

  (2)求函數(shù)單調(diào)區(qū)間的步驟(不要按圖索驥緣木求魚這樣創(chuàng)新何言?1、定義最基礎(chǔ)求法2、復(fù)合函數(shù)單調(diào)性)

 、俅_定f(x)的定義域;

 、谇髮(dǎo)數(shù);

 、塾(或)解出相應(yīng)的x的范圍、當(dāng)f'(x)>0時,f(x)在相應(yīng)區(qū)間上是增函數(shù);當(dāng)f'(x)<0時,f(x)在相應(yīng)區(qū)間上是減函數(shù)。--0,那么函數(shù)y=f(x)在這個區(qū)間內(nèi)單調(diào)遞減.-->--1)-->

  2、函數(shù)的極值

  (1)函數(shù)的極值的判定

 、偃绻趦蓚(cè)符號相同,則不是f(x)的極值點;

  ②如果在附近的左右側(cè)符號不同,那么,是極大值或極小值、

  3、求函數(shù)極值的步驟

 、俅_定函數(shù)的定義域;

  ②求導(dǎo)數(shù);

  ③在定義域內(nèi)求出所有的駐點與導(dǎo)數(shù)不存在的點,即求方程及的所有實根;④檢查在駐點左右的符號,如果左正右負(fù),那么f(x)在這個根處取得極大值;如果左負(fù)右正,那么f(x)在這個根處取得極小值、

  4、函數(shù)的最值

  (1)如果f(x)在[a,b]上的最大值(或最小值)是在(a,b)內(nèi)一點處取得的,顯然這個最大值(或最小值)同時是個極大值(或極小值),它是f(x)在(a,b)內(nèi)所有的極大值(或極小值)中最大的(或最小的),但是最值也可能在[a,b]的端點a或b處取得,極值與最值是兩個不同的概念;

  (2)求f(x)在[a,b]上的最大值與最小值的步驟①求f(x)在(a,b)內(nèi)的極值;②將f(x)的各極值與f(a),f(b)比較,其中最大的一個是最大值,最小的一個是最小值。

【高中數(shù)學(xué)學(xué)習(xí)方】相關(guān)文章:

怎樣學(xué)習(xí)高中數(shù)學(xué)04-01

高中數(shù)學(xué)的學(xué)習(xí)技巧09-30

學(xué)習(xí)高中數(shù)學(xué)的秘訣04-01

如何學(xué)習(xí)高中數(shù)學(xué)10-08

高中數(shù)學(xué)的學(xué)習(xí)方法02-04

高中數(shù)學(xué)的學(xué)習(xí)方法04-01

高中數(shù)學(xué)學(xué)習(xí)要點10-05

學(xué)習(xí)高中數(shù)學(xué)方法10-05

高中數(shù)學(xué)學(xué)習(xí)技巧04-01

高中數(shù)學(xué)的學(xué)習(xí)方法05-17