- 相關(guān)推薦
中考數(shù)學(xué)中的數(shù)學(xué)語(yǔ)言
中考數(shù)學(xué)中的數(shù)學(xué)語(yǔ)言
摘要:數(shù)學(xué)語(yǔ)言,可分為文字語(yǔ)言、符號(hào)語(yǔ)言和圖形語(yǔ)言。
簡(jiǎn)單的數(shù)學(xué)語(yǔ)言可表達(dá)豐富的數(shù)學(xué)思想。
要采取符合中學(xué)生年齡特點(diǎn)與數(shù)學(xué)語(yǔ)言表達(dá)相適應(yīng)的原則,不斷強(qiáng)化,螺旋上升。
數(shù)學(xué)語(yǔ)言能力的強(qiáng)弱是學(xué)生數(shù)學(xué)素質(zhì)發(fā)展水平的重要標(biāo)志,也是培養(yǎng)學(xué)生數(shù)學(xué)能力的重要途徑,所以加強(qiáng)中學(xué)生數(shù)學(xué)語(yǔ)言的理解能力已經(jīng)越來(lái)越受到廣大教師和學(xué)生的重視。
一、良好的數(shù)學(xué)語(yǔ)言基礎(chǔ)是提高能力的保證
中學(xué)生的數(shù)學(xué)理解能力很大程度上依賴于他對(duì)數(shù)學(xué)語(yǔ)言含義的敏感,而這種敏感又來(lái)自于其堅(jiān)實(shí)的數(shù)學(xué)語(yǔ)言基礎(chǔ)。
一個(gè)優(yōu)秀的中學(xué)生總能從一個(gè)關(guān)鍵詞、一個(gè)關(guān)鍵符號(hào)中捕捉住最關(guān)鍵的信息,對(duì)題意做出正確的理解和準(zhǔn)確的判斷。
例如,在有理數(shù)的教學(xué)中零和正整數(shù)可以表達(dá)為“非負(fù)整數(shù)”;在不等式的教學(xué)中a≥b,可以表達(dá)為a大于等于b或b不大于a;在乘方和開方的教學(xué)中要結(jié)合加、減、乘、除把六種運(yùn)算的數(shù)學(xué)語(yǔ)言講正確、講清楚。
乘方和開方它們的運(yùn)算符號(hào)只不過(guò)用字母的位置關(guān)系和根號(hào)來(lái)表示。
這樣,我們就清楚地掌握了六種運(yùn)算的(字母)名稱、運(yùn)算符號(hào)和名稱、運(yùn)算結(jié)果,同時(shí)我們用了類比的方法,同學(xué)們很容易記住了乘方和開方的運(yùn)算。
二、運(yùn)用語(yǔ)言轉(zhuǎn)換提高數(shù)學(xué)解題能力
數(shù)學(xué)思維用文字表達(dá)則生動(dòng),用符號(hào)表達(dá)則簡(jiǎn)練,用圖形表達(dá)則直觀形象,但有些問(wèn)題用文字表達(dá)過(guò)于繁雜,用符號(hào)表達(dá)又嫌抽象,而圖形表達(dá)有時(shí)又未必全面。
不少學(xué)生不善于對(duì)數(shù)學(xué)語(yǔ)言的多種形式進(jìn)行轉(zhuǎn)換,尤其是對(duì)抽象的符號(hào)語(yǔ)言常常有意回避,造成表達(dá)死板、思維僵化的惡果。
因此,在數(shù)學(xué)語(yǔ)言教學(xué)中,突出語(yǔ)言變換的能力,有利于活化學(xué)生的思維,提高解題能力。
如果把抽象的符號(hào)語(yǔ)言轉(zhuǎn)換為直觀的圖形語(yǔ)言,就可把數(shù)量關(guān)系問(wèn)題化為圖形性質(zhì)去討論,形成“以形助數(shù)”的數(shù)形結(jié)合的數(shù)學(xué)思想方法。
例1:y=│x-1│+│x-2│+│x-3│的最小值是。
分析:本題若通過(guò)分段討論求得表達(dá)式再求最小值則計(jì)算太復(fù)雜,很多學(xué)生因怕煩瑣而放棄。
如果啟發(fā)學(xué)生理解符號(hào)語(yǔ)言│a-b│的幾何意義是:在實(shí)數(shù)范圍表示數(shù)軸上代表實(shí)數(shù)a、b的兩點(diǎn)間的距離,先畫出它的圖形,以圖形啟發(fā)思維,再輔之以簡(jiǎn)單的計(jì)算和篩選,就可迅速判斷出正確結(jié)果。
另一方面,有些幾何圖形問(wèn)題雖然圖形直觀,但其已知條件和結(jié)論之間的聯(lián)系不夠明顯。
這時(shí)如果把直觀的幾何圖形用符號(hào)語(yǔ)言來(lái)表示用方程或代數(shù)的方法來(lái)解答,形成“以數(shù)助形”的方程的數(shù)學(xué)思想方法和字母表示數(shù)的數(shù)學(xué)思想方法。
就可使解題思路更清晰,更具有可操作性。
三、把數(shù)學(xué)語(yǔ)言展開聯(lián)想提高學(xué)生思維能力
數(shù)學(xué)語(yǔ)言結(jié)構(gòu)嚴(yán)謹(jǐn),特征清晰。
如果學(xué)生能結(jié)合已有的知識(shí)和經(jīng)驗(yàn)對(duì)數(shù)學(xué)問(wèn)題中的語(yǔ)言結(jié)構(gòu)進(jìn)行聯(lián)想,無(wú)疑會(huì)加強(qiáng)數(shù)學(xué)知識(shí)間的溝通和聯(lián)系,對(duì)學(xué)生思維能力的發(fā)展具有促進(jìn)作用。
四、生活語(yǔ)言與數(shù)學(xué)語(yǔ)言結(jié)合提高應(yīng)用能力
應(yīng)用問(wèn)題要通過(guò)數(shù)學(xué)方法獲得解決,首先須將其中的非數(shù)學(xué)語(yǔ)言數(shù)學(xué)化,摒棄其中表面的具體敘述,抽象出其中的數(shù)學(xué)本質(zhì),形成數(shù)學(xué)模型。
同學(xué)們要通過(guò)分析現(xiàn)實(shí)中的數(shù)學(xué)現(xiàn)象,對(duì)常見的數(shù)學(xué)現(xiàn)象進(jìn)行數(shù)學(xué)語(yǔ)言描述,由此提高建立數(shù)學(xué)模型的能力,培養(yǎng)數(shù)學(xué)應(yīng)用能力。
例2、張莊、王莊、李莊三村的位置是,張莊在李莊之南,王莊在李莊之東,一人自張莊到李莊,步行六小時(shí)到達(dá),返回時(shí),繞道王莊,經(jīng)過(guò)十小時(shí)回到張莊,如果此人每小時(shí)步行5公里,三村之間的路都是直線連接,問(wèn)張莊、王莊兩村相距多少公里?
分析:首先把生活語(yǔ)言表示成圖形語(yǔ)言,即用A、B、C分別表示張莊、王莊、李莊三村,畫出圖形,轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言就是:張莊、王莊、李莊三村的位置正好構(gòu)成一個(gè)直角三角形ABC,于是問(wèn)題轉(zhuǎn)化為在直角三角形ABC中已知b=AC=5×6=30公里,a+c=BC+AB=5×10=50公里,要求c=AB為多少公里?運(yùn)用勾股定理解二元二次方程組,問(wèn)題就解決了。
五、運(yùn)用準(zhǔn)確的數(shù)學(xué)語(yǔ)言提高表達(dá)能力
在數(shù)學(xué)語(yǔ)言表達(dá)上要做到“想得清楚,說(shuō)得明白,寫得干凈”,而事實(shí)上,中考中不少學(xué)生由于其數(shù)學(xué)表達(dá)不規(guī)范、不清晰,使閱卷老師不知所云的現(xiàn)象屢見不鮮,直接造成失分。
這些學(xué)生平時(shí)對(duì)數(shù)學(xué)語(yǔ)言的掌握不夠準(zhǔn)確或不夠重視是造成表達(dá)能力差的主要原因。
在中考中常見的表達(dá)錯(cuò)誤還有語(yǔ)意含糊、沒有把未知數(shù)設(shè)元就用于解答、亂作推廣、增刪條件、以圖代算、繁簡(jiǎn)失當(dāng)、格式不規(guī)范等。
數(shù)學(xué)具有高度的科學(xué)性,每個(gè)概念都有確定的含義,每個(gè)定理都有確定的條件,因此,數(shù)學(xué)語(yǔ)言務(wù)必清楚、準(zhǔn)確、符合科學(xué)性。
只有這樣,才能正確地掌握概念,運(yùn)用定理,并逐步養(yǎng)成嚴(yán)謹(jǐn)、縝密的思維習(xí)慣。
另外,只有當(dāng)學(xué)生能用準(zhǔn)確、清楚的語(yǔ)言將有關(guān)概念表述正確,才能反映出他的思維過(guò)程,才能說(shuō)明他理解了所學(xué)的知識(shí)。
在一定意義上講:“說(shuō)題”比“做題”更難,也更重要。
【中考數(shù)學(xué)中的數(shù)學(xué)語(yǔ)言】相關(guān)文章:
2017年中考《數(shù)學(xué)》學(xué)習(xí)重點(diǎn)10-26
中考數(shù)學(xué)審題10-26
大學(xué)數(shù)學(xué)中數(shù)學(xué)思想運(yùn)用研究10-26
2017年中考數(shù)學(xué)命題方式的解讀10-26
2017年中考《數(shù)學(xué)》數(shù)與運(yùn)算考點(diǎn)10-26
生活中的數(shù)學(xué)作文11-10
童謠兒歌中的數(shù)學(xué)10-21
數(shù)學(xué)中的邏輯趣味10-26
數(shù)學(xué)中圖形的心得11-04