- 相關推薦
《圓柱的體積》數學教案設計
教學內容:
P19-20頁例5、例6及補充例題,完成做一做及練習三第1~4題。
教學目標:
1、通過用切割拼合的方法借助長方體的體積公式推導出圓柱的體積公式,能夠運用公式正確地計算圓柱的體積和容積。
2、初步學會用轉化的數學思想和方法,解決實際問題的能力
3、滲透轉化思想,培養(yǎng)學生的自主探索意識。
教學重點:
掌握圓柱體積的計算公式。
教學難點:
圓柱體積的計算公式的推導。
教學過程:
一、復習
1、長方體的體積公式是什么?正方體呢?(長方體的體積=長寬高,長方體和正方體體積的統(tǒng)一公式底面積高,即長方體的體積=底面積高)
2、拿出一個圓柱形物體,指名學生指出圓柱的底面、高、側面、表面各是什么,怎么求。(刪掉)
3、復習圓面積計算公式的推導過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的長方形之間的關系,再利用求長方形面積的計算公式導出求圓面積的計算公式。
師小結:圓的面積公式的推導是利用轉化的思想把一個曲面圖形轉化成以前學的長方形,今天我們學習圓柱體體積公式的推導也要運用轉化的思想同學們猜猜會轉化成什么圖形?
二、新課
1、圓柱體積計算公式的推導。
(1)用將圓轉化成長方形來求出圓的面積的方法來推導圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個近似長方體的立體圖形課件演示)
(2)由于我們分的不夠細,所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。(課件演示將圓柱細分,拼成一個長方體)
反復播放這個過程,引導學生觀察思考,討論:在變化的過程中,什么變了什么沒變?
長方體和圓柱體的底面積和體積有怎樣的關系?
學生說演示過程,總結推倒公式。
。3)通過觀察,使學生明確:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。(長方體的體積=底面積高,所以圓柱的體積=底面積高,V=Sh)
【《圓柱的體積》數學教案設計】相關文章:
“圓柱的體積”教案設計10-07
《圓柱的體積》數學教案08-03
數學圓柱的體積的教學方案10-08
圓柱的體積數學教案10-07
《圓柱的體積》教案01-27
《圓柱的體積》教案10-07
圓柱的體積教案11-18
有關圓柱的體積的教案10-07
圓柱的體積教學教案10-08
圓柱的體積教案15篇03-29