亚洲色影视在线播放_国产一区+欧美+综合_久久精品少妇视频_制服丝袜国产网站

教案

平行線的性質(zhì)的教案設(shè)計(jì)

時(shí)間:2022-10-12 09:01:18 教案 我要投稿
  • 相關(guān)推薦

平行線的性質(zhì)的教案設(shè)計(jì)

  【教學(xué)目標(biāo)】

平行線的性質(zhì)的教案設(shè)計(jì)

  1。經(jīng)歷從性質(zhì)公理推出性質(zhì)2的過(guò)程;掌握平行線的性質(zhì),并能用它們作簡(jiǎn)單的邏輯推理;

  2。感受原命題與逆命題,從而了解平行線的性質(zhì)公理與判定公理的區(qū)別,能在推理過(guò)程正確使用。

  【教學(xué)重點(diǎn)】

  平行線的性質(zhì)以及應(yīng)用。

  【教學(xué)難點(diǎn)】

  平行線的性質(zhì)公理與判定公理的區(qū)別。

  【對(duì)話設(shè)計(jì)】

  〖探索1〗反過(guò)來(lái)也成立嗎

  過(guò)去我們學(xué)過(guò):如果兩個(gè)數(shù)的和為0,這兩個(gè)數(shù)互為相反數(shù)。反過(guò)來(lái),如果兩個(gè)數(shù)互為相反數(shù),那么這兩個(gè)數(shù)的和為0。這兩個(gè)句子都是正確的。

  現(xiàn)在換一個(gè)例子:如果兩個(gè)角是對(duì)頂角,那么這兩個(gè)角相等。它是對(duì)的。反過(guò)來(lái),如果兩個(gè)角相等,這兩個(gè)角是對(duì)頂角。對(duì)嗎?

  再看下面的例子:如果一個(gè)整數(shù)個(gè)位上的數(shù)字是5,那么它一定能夠被5整除。對(duì)嗎?這句話反過(guò)來(lái)怎么說(shuō)?對(duì)不對(duì)?

  〖結(jié)論〗如果一個(gè)句子是正確的,反過(guò)來(lái)說(shuō)(因果對(duì)調(diào)),就未必正確。

  〖探索2〗

  上一節(jié)課,我們學(xué)過(guò):同位角相等,兩直線平行。反過(guò)來(lái)怎么說(shuō)?它還是對(duì)的嗎?完成P21的探究,寫出你的猜想。

  〖推理舉例〗

  如果把平行線性質(zhì)1———"兩直線平行,同位角相等"看作是基本事實(shí)(公理),我們可以利用這個(gè)公理證明平行線性質(zhì)2:"兩直線平行,內(nèi)錯(cuò)角相等"。

  如圖,已知:直線a、b被直線c所截,且a∥b,

  求證:∠1=∠2。

  證明:∵a∥b,

  ∴∠1=∠3(__________________)。

  ∵∠3=∠2(對(duì)頂角相等),

  ∴∠1=∠2(等量代換)。

  〖探索3〗下面我們來(lái)證明平行線的性質(zhì)3:兩直線平行,同旁內(nèi)角互補(bǔ)。請(qǐng)模仿范例寫出證明。

  如圖,已知:直線a、b被直線c所截,且a∥b,

  求證:∠1+∠2=180?。

  證明:

  〖探索4〗

  如圖:直線a、b被直線c所截,

 。1)若a∥b,可以得到∠1=∠2。根據(jù)什么?

 。2)若∠1=∠2,可以得到a∥b。根據(jù)什么?根據(jù)和(1)一樣嗎?

  〖練習(xí)1〗如圖,已知直線a、b被直線c所截,在括號(hào)內(nèi)為下面各小題的推理填上適當(dāng)?shù)母鶕?jù):

 。1)∵a∥b,∴∠1=∠3(___________________);

 。2)∵∠1=∠3,∴a∥b(_________________)。

 。3)∵a∥b,∴∠1=∠2(__________________);

 。4)∴a∥b,∴∠1+∠4=180?

  (_____________________________________)

 。5)∵∠1=∠2,∴a∥b(___________________);

 。6)∵∠1+∠4=180?,∴a∥b(_______________)。

  〖練習(xí)2〗

  畫兩條平行線,說(shuō)出你畫圖的根據(jù);再任意畫一條直線和這兩條平行線都相交,寫出所生成的角當(dāng)中的一對(duì)內(nèi)錯(cuò)角,并說(shuō)明這一對(duì)角一定相等的理由。

  〖作業(yè)〗

  P25。1、2、3、4。

【平行線的性質(zhì)的教案設(shè)計(jì)】相關(guān)文章:

初中數(shù)學(xué)《平行線的性質(zhì)》教案(通用11篇)07-18

漢字性質(zhì)綜述10-26

《小數(shù)的性質(zhì)》教案02-20

減法的運(yùn)算性質(zhì)教案11-02

總結(jié)歸納方差的性質(zhì)10-01

會(huì)議總結(jié)特點(diǎn)和性質(zhì)08-24

社會(huì)募捐法律性質(zhì)10-26

虛擬財(cái)產(chǎn)的法律性質(zhì)10-26

雙曲線的幾何性質(zhì)教案11-15

初中數(shù)學(xué) 平行線等分線段定理 教案12-28