亚洲色影视在线播放_国产一区+欧美+综合_久久精品少妇视频_制服丝袜国产网站

教案

《圓柱的體積》教案

時間:2024-07-26 14:25:32 教案 我要投稿

《圓柱的體積》教案

  作為一名優(yōu)秀的教育工作者,時常需要編寫教案,借助教案可以讓教學(xué)工作更科學(xué)化。那么應(yīng)當(dāng)如何寫教案呢?以下是小編收集整理的《圓柱的體積》教案,僅供參考,大家一起來看看吧。

《圓柱的體積》教案

《圓柱的體積》教案1

  本節(jié)課的設(shè)計思考:

  一、讓學(xué)生在現(xiàn)實情境中體驗和理解數(shù)學(xué)

  《課程標(biāo)準(zhǔn)》指出:要創(chuàng)設(shè)與學(xué)生生活環(huán)境、知識背景密切相關(guān)的、又是學(xué)生感興趣的學(xué)習(xí)情境,讓學(xué)生在觀察、操作、猜測、交流、反思等活動中體會數(shù)學(xué)知識的產(chǎn)生、形成與發(fā)展的過程,獲得積極的情感體驗,感受數(shù)學(xué)的力量,同時掌握必要的基礎(chǔ)知識與基本技能。在本節(jié)課中,我給學(xué)生創(chuàng)設(shè)了生活情景(裝在杯子中的水的體積你會求嗎?)學(xué)生聽到教師提的問題訓(xùn)在身邊的生活中,頗感興趣。學(xué)生經(jīng)過思考、討論、交流,找到了解決的方法。而且此環(huán)節(jié)還自然滲透了圓柱體(新問題)和長方體(已知)的知識聯(lián)系。在此基礎(chǔ)上教師又進(jìn)一步從實際需要提出問題:如果要求某些建筑物中圓柱形柱子的體積,能用剛才同學(xué)們想出來的辦法嗎?這一問題情境的創(chuàng)設(shè),激發(fā)學(xué)生從問題中思考尋求一種更廣泛的方法來解決圓柱體體積的欲望。

  二、鼓勵學(xué)生獨立思考,引導(dǎo)學(xué)生自主探索、合作交流

  數(shù)學(xué)學(xué)習(xí)過程充滿著觀察、實驗、模擬、推斷等探索性與挑戰(zhàn)性活動,因此,動手實踐、自主探究、合作交流是《課程標(biāo)準(zhǔn)》所倡導(dǎo)的數(shù)學(xué)學(xué)習(xí)的主要方式。在本節(jié)課提示課題后,我先引導(dǎo)學(xué)生獨立思考要解決圓柱的體積問題,可以怎么

  辦?學(xué)生通過思考很快確定打算把圓柱轉(zhuǎn)化成長方體。那么怎樣來切割呢?此時采用小組討論交流的形式。同學(xué)們有了圓面積計算公式推導(dǎo)的經(jīng)驗,經(jīng)過討論得出:把圓柱的底面沿直徑分成若干等份。在此基礎(chǔ)上,小組拿出學(xué)具進(jìn)行了動手操作,拼成了一個近似的`長方體。同學(xué)們在操作、比較中,圍繞圓柱體和長方體之間的聯(lián)系,抽象出圓柱體的體積公式。這個過程,學(xué)生從形象具體的知識形成過程(想象、操作、演示)中,認(rèn)識得以升華(較抽象的認(rèn)識——公式)。 不足之處:

  在學(xué)生們動手操作時,我處理的有點急,沒有給學(xué)生充分的思考和探究的時間。在今后的教學(xué)中我要特別關(guān)注學(xué)生的學(xué)習(xí)過程,優(yōu)化課堂教學(xué),對教材進(jìn)行適當(dāng)?shù)募庸ぬ幚。?shù)學(xué)知識的教學(xué),必須抓住各部分內(nèi)容之間的內(nèi)在聯(lián)系,遵循教材特點和學(xué)生的認(rèn)知規(guī)律。圓柱體積的教學(xué),要借助于學(xué)生已經(jīng)學(xué)過的長方體體積的計算方法,通過分析、推導(dǎo)、演示,發(fā)現(xiàn)新知識。推導(dǎo)出圓柱體積的計算公式,實現(xiàn)教學(xué)目的。圓柱的體積這部分知識是學(xué)生在有了圓柱、圓和長方體的相關(guān)知識基礎(chǔ)上進(jìn)行教學(xué)的。在知識和技能上,通過對圓柱體積的具體研究,理解圓柱體的體積公式的推導(dǎo)過程,會計算圓柱的體積;在方法的選擇上,抓信新舊知識的聯(lián)系,通過想象、實際操作,從經(jīng)歷和體驗中思考,培養(yǎng)學(xué)生科學(xué)的思維方法;貼近學(xué)生生活實際,創(chuàng)設(shè)情境,解決問題,體現(xiàn)數(shù)學(xué)知識“從生活中來到生活中去”的理念,激發(fā)學(xué)生的學(xué)習(xí)興趣和對科學(xué)知識的求知欲,使學(xué)生樂于探索,善于探究。在新的課改形勢下,死記硬背這種膚淺的、教條的、機械的學(xué)習(xí)方式已經(jīng)完全不適應(yīng)教學(xué)改革的需要,不利于學(xué)生健康的成長發(fā)展的需要,教師要重視引導(dǎo)學(xué)生去探索,思考,發(fā)現(xiàn)規(guī)律,培養(yǎng)學(xué)生分析問題和解決問題的能力。反思本節(jié)課的教學(xué),覺得在練習(xí)設(shè)計上還可以下一番功夫。比如可以設(shè)計開放性習(xí)題:給一個圓柱形積木,讓學(xué)生先測量相關(guān)數(shù)據(jù)再計算體積等等。

  二、教師的語言非常貧乏

  在課堂教學(xué)中,評價語言是非常重要,它總是伴隨在教學(xué)的始終,貫穿于整個課堂,缺乏激勵的課堂就會像一潭死水,毫無生機。而精妙的評價語言就像是催化劑,能使課堂掀起層層波瀾,讓學(xué)生思維的火花時刻被點燃。教師準(zhǔn)確,生動,親切的評價語言大大調(diào)動了學(xué)生學(xué)習(xí)的主動性和積極性,讓學(xué)生在激勵中學(xué)、自信中學(xué)、快樂中學(xué),讓教師與學(xué)生零距離地接觸,我想學(xué)生的心理更能感覺到更大的鼓舞。

  蘇霍姆林斯基指出:“教育的藝術(shù)首先包括談話的藝術(shù)!苯處煹慕虒W(xué)效果,很大程度上取決于他的語言表達(dá)能力。數(shù)學(xué)課堂教學(xué)過程就是數(shù)學(xué)知識的傳遞過程。在整個課堂教學(xué)過程中,數(shù)學(xué)知識的傳遞、學(xué)生接受知識情況的反饋,師生間的情感交流等,都必須依靠數(shù)學(xué)語言。教師的語言表達(dá)方式和質(zhì)量直接影響著學(xué)生對知識的接受,教師語言的情感引發(fā)著學(xué)生的情感,所以說教師的語言藝術(shù)是課堂教學(xué)藝術(shù)的核心。我這節(jié)課最大的失誤是語言沒有發(fā)揮出調(diào)控課堂駕馭課堂的作用。

《圓柱的體積》教案2

  教學(xué)目標(biāo):

  1、知識技能

  結(jié)合具體情境,讓學(xué)生探索并掌握圓柱體積的計算方法,并能運用計算公式解決簡單的實際問題。

  2、過程方法

  讓學(xué)生經(jīng)歷觀察、實驗、猜想、證明等數(shù)學(xué)活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗數(shù)學(xué)研究的方法。

  3、情感態(tài)度價值觀

  通過圓柱體積計算公式的推導(dǎo)、運用的過程,體驗數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。

  教學(xué)重點:掌握和運用圓柱體積計算公式。

  教學(xué)難點:圓柱體積計算公式的推導(dǎo)過程

  設(shè)計理念:圓柱的體積是幾何知識的綜合運用,是在學(xué)生已了解了圓柱體的特征、掌握了長方體體積的計算方法以及圓的面積計算公式的推導(dǎo)過程的基礎(chǔ)上進(jìn)行教學(xué)的,是后面學(xué)習(xí)圓錐體積的基礎(chǔ)。因此根據(jù)本節(jié)課內(nèi)容的特點,我把教學(xué)設(shè)計定位在通過對圓柱體積知識的探究,培養(yǎng)學(xué)生探究數(shù)學(xué)知識的能力和方法!稊(shù)學(xué)新課標(biāo)》指出:動手實踐、自主探索、合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式,在圓柱的體積這節(jié)課我盡量使其體現(xiàn)達(dá)到化,因此為了突破重難點,本節(jié)課的教法和學(xué)法體現(xiàn)出以下的幾個特點:

  1、合作探究學(xué)習(xí)為主要的學(xué)習(xí)方式。

  2、直觀教學(xué),先利用教具演示讓學(xué)生觀察比較,再讓學(xué)生動手操作。

  3、讓學(xué)生運用知識的遷移規(guī)律,主動學(xué)習(xí),掌握知識、形成技能。

  教具準(zhǔn)備:

  圓柱的體積公式演示課件水槽水體積不同的圓柱體直尺細(xì)繩計算器。

  教學(xué)過程

  一、情景引入

  1、教學(xué)開始首先出示了一個裝了半杯水的燒杯,然后拿出一個圓柱形物體準(zhǔn)備投入水中并讓學(xué)生觀察:會發(fā)生什么情況?由這個發(fā)現(xiàn)你想到了些什么?

  2、提問:“能用一句話說說什么是圓柱的體積嗎?”

  (設(shè)計意圖:在這個環(huán)節(jié)設(shè)計觀察活動,意圖是讓學(xué)生通過觀察自主得出圓柱體積的定義,進(jìn)一步加深對體積概念的理解,并為下面的探究活動提供研究方法。)

  二、自主探究、

  1、比較大小、探究圓柱的體積與哪些要素有關(guān)。

  (1)、先出示了兩個大小不等的圓柱體讓學(xué)生判斷哪個體積大?

  (2)、提問:“要比較兩個圓柱體的體積你有什么好辦法?”學(xué)生想到將圓柱體放進(jìn)水中,比較哪個水面升得高。

  (3)、讓學(xué)生運用這樣的方法自己比較底等高不等和高等底不等的兩組圓柱的體積,并將實驗結(jié)果填入實驗報告1中。(課件出示)

  (4)、學(xué)生通過動手操作匯報結(jié)論:當(dāng)?shù)椎葧r,圓柱越高體積越大;當(dāng)高等時,圓柱底面越大體積越大。即圓柱的體積的大小與它的'底面積和高有關(guān)。

  (設(shè)計意圖:本環(huán)節(jié)教學(xué)讓學(xué)生根據(jù)已有的知識解決簡單的問題,通過探究活動,引導(dǎo)學(xué)生找出決定圓柱體積的兩個因素,為學(xué)習(xí)新知識作鋪墊,同時也發(fā)展了學(xué)生的抽象概括能力。)

  2、大膽猜想,感知體積公式,確定探究目標(biāo)。

  (1)、再次設(shè)疑:如果要準(zhǔn)確的知道哪個圓柱的體積大,大多少,你有什么好辦法?學(xué)生想如何計算圓柱的體積。

  (2)、引導(dǎo)學(xué)生回憶圓的面積公式和長方體的體積公式的推導(dǎo)過程。

  (3)、讓學(xué)生思考:怎樣計算圓柱的體積呢,依據(jù)學(xué)過的知識,你可以做出怎樣的假設(shè)?

  (4)、學(xué)生小組討論交流并匯報:圓柱平均分成若干小扇形體后應(yīng)該也能夠轉(zhuǎn)化成一個近似長方體;圓柱的體積可能也是用底面積乘高來計算。

  (5)、讓學(xué)生依據(jù)假設(shè)結(jié)論分組測量圓柱C和圓柱D的有關(guān)數(shù)據(jù),用計算器計算體積,并填入實驗報告2中。(課件出示)

  (設(shè)計意圖:通過設(shè)疑使學(xué)生認(rèn)識到學(xué)習(xí)圓柱體積公式的必要性,激發(fā)學(xué)生的探究興趣。接著通過設(shè)計猜想的過程,充分運用學(xué)生已有的知識經(jīng)驗,讓學(xué)生回憶了學(xué)習(xí)長方體體積時的實踐方法和將圓形轉(zhuǎn)化成長方形的過程,學(xué)生在如此豐富的知識經(jīng)驗基礎(chǔ)上就做到了心中有數(shù),猜想的膽量就更大,假想的合理性就更強。)

  4、確定方法,探究實驗,驗證體積公式。

  (1)、首先要求學(xué)生利用實驗工具,自主商討確定研究方法。

  (2)、學(xué)生通過討論交流確定了兩種驗證方案。

  方案一:將圓柱C放入水中,驗證圓柱C的體積。

  方案二:將學(xué)具中已分成若干分扇形塊的圓柱D拆拼成新的形體,計算新形體的體積,驗證圓柱D的體積。

  (3)、學(xué)生按照自己所設(shè)想的方案動手實驗,并記錄有關(guān)數(shù)據(jù),填入實驗報告2中。(課件出示)

  (4)、實驗后讓學(xué)生對數(shù)據(jù)進(jìn)行分析:用實驗的方法得出的數(shù)據(jù)與實驗前假想計算的數(shù)據(jù)進(jìn)行比較,你發(fā)現(xiàn)了什么?

  (5)、學(xué)生匯報:實驗的結(jié)果與猜想的結(jié)果基本相同。

  (6)、教師用課件演示將圓柱體轉(zhuǎn)化成長方體的過程,向?qū)W生明確圓柱的體積確實可以像計算長方體體積那樣,用底面積乘以高。(課件出示)

  (7)、小結(jié):

  要想求出一個圓柱的體積,需要知道什么條件?

  (8)、學(xué)生自學(xué)第8頁例4上面的一段話:用字母表示公式。

  學(xué)生反饋自學(xué)情況:

  v=sh(設(shè)計意圖這部分教學(xué)采用以小組合作探究的學(xué)習(xí)方式進(jìn)行數(shù)學(xué)活動,充分調(diào)動學(xué)生各種感官,完成從操作→觀察、比較→歸納推理的認(rèn)知過程,讓學(xué)生通過自己動手、動腦得到結(jié)論。通過讓學(xué)生自己設(shè)計實驗方案和自主實驗探究的活動,培養(yǎng)了學(xué)生的創(chuàng)新精神和實踐能力。)

  三、鞏固發(fā)展

  1、課件出示例4,學(xué)生獨立完成。

  指名說說這樣列式的依據(jù)是什么。

  (設(shè)計意圖:使學(xué)生注意解題格式,注意體積的單位為三次方)

  2、鞏固反饋

  填表

  底面積(㎡)高(m)圓柱體積(m3)

  63

  0.58

  82

  (設(shè)計意圖:設(shè)計練習(xí)能使學(xué)生達(dá)到舉一反三的效果,從而訓(xùn)練學(xué)生的技能。這是第一層基本練習(xí),通過這道題可以使學(xué)生更好的掌握本課重點,夯實基礎(chǔ)知識)

  3、完成第9頁的“試一試”和練一練”中的兩道題。

  (“練一練”只列式,不計算)

  集體訂正,說一說圓柱體的體積還可以怎樣算?

  (設(shè)計意圖:這是第二層變式練習(xí)。是讓學(xué)生在掌握公式的基礎(chǔ)上理解公式,學(xué)會靈活運用公式的訓(xùn)練題。通過對公式的拓展性理解,可以進(jìn)一步加深學(xué)生對圓柱體積公式的理解和掌握,同時也能培養(yǎng)學(xué)生的邏輯思維能力。)

  4、一個圓柱形水杯的底面直徑是10厘米,高是15厘米,已知水杯中水的體積是整個水杯體積的2/3,計算水杯中水的體積?

  (設(shè)計意圖:這是第三層發(fā)展性練習(xí),安排了密切聯(lián)系生活實際的習(xí)題,讓學(xué)生運用公式解決問題,切實體驗到數(shù)學(xué)就存在于自己的身邊。)

  5、拓展練習(xí)

  (1)、一個長方形的紙片長是6分米,寬4分米。用它分別圍成兩個圓柱體,A是用4分米做底高6分米,B是用6分米做底高是4分米它們的體積大小一樣嗎?請你計算說明理由。(得數(shù)保留兩位小數(shù))

  (2)、一個底面直徑是20厘米的圓柱形容器里,放進(jìn)一個不規(guī)則的鑄鐵零件后,容器里的水面升高4厘米,求這鑄鐵零件的體積是多少?

  (設(shè)計意圖:安排了密切聯(lián)系生活實際的習(xí)題,讓學(xué)生運用公式解決引入環(huán)節(jié)中的兩個問題,使學(xué)生認(rèn)識到數(shù)學(xué)的價值體驗到數(shù)學(xué)對于了解周圍世界和解決實際問題是非常有作用的;能使學(xué)生的思維處于積極的狀態(tài)達(dá)到培養(yǎng)學(xué)生思維的靈活性和創(chuàng)造性解決問題能力的目的。)

  四、全課小結(jié):

  談?wù)勥@節(jié)課你有哪些收獲。

《圓柱的體積》教案3

  教學(xué)目標(biāo):

  1.結(jié)合實際讓學(xué)生探索并掌握圓柱體積的計算方法,能正確運用公式解決簡單的實際問題。

  2.讓學(xué)生經(jīng)歷觀察、猜想、驗證等數(shù)學(xué)活動過程,培養(yǎng)學(xué)生空間想象能力和探究推理能力,滲透“轉(zhuǎn)化”、“極限”等數(shù)學(xué)思想,體驗數(shù)學(xué)研究的方法。

  3.通過圓柱體積計算公式的推導(dǎo)、運用的過程,體驗數(shù)學(xué)問題的探索性和挑戰(zhàn)性,獲得成功的喜悅。

  教學(xué)重點:

  理解并掌握圓柱體積計算公式,并能應(yīng)用公式計算圓柱的體積。

  教學(xué)準(zhǔn)點:

  掌握圓柱體積公式的推導(dǎo)過程。

  教學(xué)準(zhǔn)備:

  圓柱的體積演示教具、多媒體課件、圓柱實物2個(一個為橡皮泥)、水槽、水。

  教學(xué)過程:

  一、情境激趣導(dǎo)入新課

  1、課始師首先出示一個長方體和一個正方體,說說怎樣求它們的體積,接著師往正方體容器中倒入一定量的水,然后拿出一個圓柱形物體準(zhǔn)備投入水中并讓學(xué)生觀察:有什么現(xiàn)象發(fā)生?由這個發(fā)現(xiàn)你想到了些什么?

  2、提問:“能用一句話說說什么是圓柱的體積嗎?” (板書課題)

  二、自主探究, 學(xué)習(xí)新知

  (一)設(shè)疑

  1、從剛才的實驗中你有辦法得到這個圓柱學(xué)具的體積嗎?

  2、再出示一個用橡皮泥捏成的圓柱體模型,你又能用什么好辦法求出它的體積?

  3、如果要求大廳內(nèi)圓柱的體積,或壓路機前輪的體積,還能用剛才的方法嗎?(生搖頭)

  師:看來,我們剛才的方法有一定的局限性,要是能像求長方體或正方體那樣,有一個通用的公式

  (二)猜想

  1、猜想一下圓柱的體積大小可能與什么有關(guān)?理由是什么?

  2、大家再來大膽猜測一個,圓柱的體積公式可能是什么?說說你的理由?

 。ㄈ炞C

  1、為了證實剛才的猜想,我們可以通過實驗來驗證。怎樣進(jìn)行這個實驗?zāi)?結(jié)合我們以往學(xué)習(xí)幾何圖形的經(jīng)驗,說說自己的想法。(用轉(zhuǎn)化的方法,根據(jù)學(xué)生敘述課件演示圓的面積公式推導(dǎo)過程)

  2、圓柱能轉(zhuǎn)化成我們學(xué)過的什么圖形呢?它又是怎么轉(zhuǎn)化成這種圖形的?(小組討論后匯報交流)

  3、指名兩位學(xué)生上臺用圓柱體積教具進(jìn)行操作,把圓柱體轉(zhuǎn)化為近似的長方體。

  4、根據(jù)學(xué)生操作,師再次課件演示圓柱轉(zhuǎn)化成長方體的過程。并引導(dǎo)學(xué)生分析當(dāng)分的份數(shù)越多時,拼成的圖形越接近長方體。

  5、通過上面的觀察小組討論:

  (1) 圓柱體通過切拼后,轉(zhuǎn)化為近似的長方體,什么變了?什么沒變?

  (2) 長方體的底面積與原來圓柱體的哪部分有關(guān)系?有什么關(guān)系?

  (3) 長方體的高與原來圓柱體的哪部分有關(guān)系?有什么關(guān)系?

  (4) 你認(rèn)為圓柱的體積可以怎樣計算?

 。ㄉ鷧R報交流,師根據(jù)學(xué)生講述適時板書。)

  小結(jié):把圓柱體轉(zhuǎn)化成長方體后,形狀變了,體積不變,長方體的底面積等于圓柱的底面積,高等于圓柱的高,因為長方體的體積等于底面積×高,所以圓柱體積也等于底面積×高,用字母表示是V=Sh。

  6、同桌相互說說圓柱體積的推導(dǎo)過程。

  7、完成“做一做 ”:一根圓形木料,底面積為75cm2,長是90cm。它的體積是多少?(生練習(xí)展示并評價)

  8、求圓柱體積要具備什么條件?

  9、思考:如果只知道圓柱的底面半徑和高,你有辦法求出圓柱的體積嗎?如果是底面直徑和高,或是底面周長和高呢?(學(xué)生討論交流)

  小結(jié):可以根據(jù)已知條件先求出圓柱的底面積,再求圓柱的體積。

  10、出示課前的圓柱,說一說現(xiàn)在你可以用什么辦法求出這個圓柱的體積?(測不同數(shù)據(jù)計算)

  11、練一練:列式計算求下列各圓柱體的體積。

 。1)底面半徑2cm,高5cm。

 。2)底面直徑6dm,高1m。

 。3)底面周長6.28m,高4m。

  三、練習(xí)鞏固拓展提升

  1、判斷正誤:

  (1)等底等高的圓柱體和長方體體積相等!ǎ

 。2)一個圓柱的底面積是10cm2,高是5m,它的體積是10×5=50cm3。.....()

  (3)圓柱的底面積越大,它的體積就越大。............( )

 。4)一個圓柱的體積是80cm3,底面積是20cm2,它的高是4cm。......( )

  2、這是我們學(xué)校種榕樹的一個花壇,測得花壇內(nèi)直徑是4m,花壇內(nèi)填土高度是0.5m,算一算這個花壇內(nèi)一共填土多少立方米?

  3、學(xué)習(xí)很愉快,我們來慶祝一下:在一個棱長為20厘米正方體紙盒中,放一個最大的圓柱體蛋糕,系上180厘米長的絲帶(打結(jié)部分忽略不計),那么這個蛋糕的體積到底是多少呢?

  四、全課總結(jié)自我評價

  通過這節(jié)課的學(xué)習(xí)你有什么感受和收獲?

  教學(xué)反思:

  圓柱的體積是幾何知識的綜合運用,它是在學(xué)生了解了圓柱的特征、掌握了長方體和正方體體積以及圓的面積計算公式推導(dǎo)過程的基礎(chǔ)上進(jìn)行教學(xué)的。由于圓柱是一種含有曲面的幾何體,這給體積的認(rèn)識和計算增加了難度。為了降低學(xué)習(xí)難度,讓學(xué)生更好地理解和掌握圓柱體積的計算方法,為后面學(xué)習(xí)圓錐體積打下堅實的基礎(chǔ),因此在本節(jié)課的教學(xué)設(shè)計上我十分注重從生活情境入手,讓學(xué)生經(jīng)歷圓柱體積的探究過程,通過一系列的數(shù)學(xué)活動,培養(yǎng)學(xué)生探究數(shù)學(xué)知識的能力和方法,同時在學(xué)習(xí)活動中體驗學(xué)習(xí)的樂趣。

  從本節(jié)課教學(xué)目標(biāo)的達(dá)成來看,較好地體現(xiàn)了以下幾方面:

  一、創(chuàng)設(shè)生活情境,體現(xiàn)數(shù)學(xué)生活化。

  《新課程標(biāo)準(zhǔn)》指出:要創(chuàng)設(shè)與學(xué)生生活環(huán)境、知識背景密切相關(guān)的,又是學(xué)生感興趣的學(xué)習(xí)情境,讓學(xué)生在觀察、操作、猜測、交流、反思等活動中逐步體會數(shù)學(xué)知識的產(chǎn)生、形成與發(fā)展的過程,獲得積極的情感體驗,感受數(shù)學(xué)的力量,同時掌握必要的基礎(chǔ)知識與基本技能。在本節(jié)課中,我從生活情境入手,創(chuàng)設(shè)了一個裝水的學(xué)具槽放入圓柱學(xué)具使水面上升的情境,引導(dǎo)學(xué)生觀察思考,直觀感知圓柱體積的概念,同時意識到過去學(xué)的排水法可以用來求圓柱的體積,緊接著當(dāng)老師再出示橡皮泥捏成的圓柱體模型,并追問大廳內(nèi)圓柱的體積等問題時,學(xué)生意識到前面所說求體積計算方法的.局限性,從而產(chǎn)生思維困惑,進(jìn)一步激發(fā)了探究圓柱體積計算方法的欲望。這樣的導(dǎo)入不僅為學(xué)生創(chuàng)造了一個十分寬松的生活化學(xué)習(xí)環(huán)境,還為學(xué)生后面構(gòu)建數(shù)學(xué)模型,發(fā)現(xiàn)圓柱體積公式奠定了基礎(chǔ)。在練習(xí)的設(shè)計上,為避免純數(shù)學(xué)的計算,我以學(xué)生熟悉的學(xué)校圓柱形花壇為背景,提出求花壇填土體積這樣的問題,讓學(xué)生學(xué)會靈活應(yīng)用知識解決簡單的實際問題,在鞏固體積計算方法的同時,進(jìn)一步感受到數(shù)學(xué)知識的使用價值。這樣的教學(xué)安排不僅體現(xiàn)了數(shù)學(xué)來源于生活,又應(yīng)用于生活的思想,也使數(shù)學(xué)的課堂教學(xué)充滿濃濃的生活味。

  二、引導(dǎo)學(xué)生經(jīng)歷知識探究的全過程。

  動手實踐、自主探究、合作交流是《新課程標(biāo)準(zhǔn)》所倡導(dǎo)的數(shù)學(xué)學(xué)習(xí)的主要方式。在本課教學(xué)中,由于學(xué)具的欠缺,沒能給學(xué)生提供小組動手操作的機會,為了彌補這一不足,最大限度發(fā)揮學(xué)生自主學(xué)習(xí)的作用,教學(xué)中我努力為學(xué)生搭建探究平臺,通過觀察、設(shè)疑、猜想、驗證,經(jīng)歷圓柱體積的轉(zhuǎn)化過程,發(fā)展學(xué)生的空間想象能力。在探究圓柱體積的過程中,我從本班學(xué)情出發(fā),大膽放手讓學(xué)生猜想“圓柱體積大小可能與什么有關(guān),可能怎樣計算,為什么?”,然后再結(jié)合以往學(xué)習(xí)幾何圖形的經(jīng)驗,回顧圓的面積推導(dǎo)過程,實現(xiàn)知識遷移,明確“轉(zhuǎn)化”思想在數(shù)學(xué)研究中的重要意義。為了讓學(xué)生直觀感受到圓柱體轉(zhuǎn)化為長方體的過程,我較好地借助實物模型和多媒體課件演示,把二者有機結(jié)合,先讓兩個學(xué)生上臺操作演示,然后再課件動態(tài)模擬,在學(xué)生充分觀察的基礎(chǔ)上,小組討論交流:當(dāng)圓柱體轉(zhuǎn)化成近似的長方體后什么變了,什么沒變?長方體的底面積與圓柱的底面積有什么關(guān)系?長方體的高與圓柱的高有什么關(guān)系?從而得出結(jié)論:圓柱的體積等于底面積乘以高。整個探究過程以學(xué)生自主學(xué)習(xí)為主,知識的形成給學(xué)生留下深刻的印象。伴隨著問題的圓滿解決,學(xué)生體驗到了成功的喜悅與滿足。

  三、注重學(xué)法指導(dǎo)和數(shù)學(xué)思想方法的滲透。

  “學(xué)會學(xué)習(xí)”是對學(xué)生“學(xué)”的最高要求,因此在教學(xué)中不但要教給學(xué)生知識,更要教給學(xué)生學(xué)習(xí)的方法,讓學(xué)生終身受用。在本節(jié)課的教學(xué)中,我把“觀察、猜想、驗證”的學(xué)法指導(dǎo),貫穿于整個學(xué)習(xí)過程,使學(xué)生學(xué)得主動有效。在探究方法的引導(dǎo)上從回憶圓的面積公式推導(dǎo)入手,確定轉(zhuǎn)化的方法,體驗轉(zhuǎn)化的過程,驗證轉(zhuǎn)化的結(jié)果,使“轉(zhuǎn)化”、“極限”等數(shù)學(xué)思想在課中得到良好滲透,學(xué)生進(jìn)一步體會到科學(xué)、條理的數(shù)學(xué)思維方式,從而發(fā)展了學(xué)生的數(shù)學(xué)能力。

《圓柱的體積》教案4

  教學(xué)目標(biāo):

  1、使學(xué)生理解圓柱側(cè)面積和圓柱表面積的含義,掌握圓柱側(cè)面積和表面積的計算方法。

  2、根據(jù)圓柱表面積和側(cè)面積的關(guān)系,使學(xué)生學(xué)會運用所學(xué)的知識解決簡單的實際問題。

  教學(xué)重點:目標(biāo)1。

  教學(xué)難點:目標(biāo)2。

  教學(xué)過程:

  活動一:復(fù)習(xí)舊知,鞏固學(xué)過的公式。

  1、一個直徑是100毫米的圓,求周長。

  2、一個半徑3厘米的圓,求周長和面積。

  3、一個長為3米,寬為2米的長方形,它的面積是多少?

  4、出示圓柱體的模型,說說它有什么特征?

  活動二;探究新知。

  1、做一個圓柱形紙盒,至少需要多大面積的紙板?(接口處不計)。

  要解決這個問題,就是求什么?

  2、圓柱的表面積包括哪幾部分?

  3、圓柱的表面積的計算關(guān)鍵在哪一部分?

  4、探索圓柱側(cè)面積的計算方法。

  1)圓柱的側(cè)面展開后是一個怎樣的圖形呢?用一張長方形的紙,可以卷成圓柱形。

  2)圓柱側(cè)面展開圖的長和寬與這個圓柱有什么關(guān)系?怎樣求圓柱的'側(cè)面積呢?

  3)師;圓柱的側(cè)面積就是求長方形的面積。用長乘寬。

  4)長就是圓柱的底面圓的周長,寬就是圓柱的高。

  5)請你來總結(jié)一下圓柱側(cè)面積的計算方法。

  6)圓柱的側(cè)面積用2∏rh,求圓柱的表面積要用側(cè)面積加兩個底面積。

  活動三:新知識的運用。

  1、求底面半徑是10厘米,高30厘米的圓柱的表面積。

  2、教師板書:

  側(cè)面積:2╳3.14╳10╳30=1884(平方厘米)。

  底面積:3.14╳10╳10=314(平方厘米)。

  表面積:1884+314╳2=2512(平方厘米)。

  要求按步驟進(jìn)行書寫。

  2、試一試。

  求至少需要多少鐵皮,就是求水桶的表面積。

  這道題要注意什么?無蓋就只算一個底面。這種題如果求整數(shù),一般用進(jìn)一法。

  3、練一練。書第6頁第1題。

  3個小題:已知底面直徑或底面周長和高,求圓柱的表面積。重點討論:已知底面周長,求表面積。

  數(shù)學(xué)六年級圓柱的體積教案

  1、了解圓柱體體積(包括容積)的含義,進(jìn)一步理解體積和容積的含義。

  2、經(jīng)歷探索圓柱體積計算方法的過程,掌握圓柱體積的計算方法,能正確計算圓柱的體積,并會解決一些簡單的實際問題。

  3、培養(yǎng)初步的空間觀念和思維能力;進(jìn)一步認(rèn)識“轉(zhuǎn)化”的思考方法。

  理解和掌握圓柱的體積計算公式,會求圓柱的體積。

  理解圓柱體積計算公式的推導(dǎo)過程。

  一、復(fù)述回顧,導(dǎo)入新課。

  以2人小組回顧下列內(nèi)容:(要求1題組員給組長說,組長補充。2題同桌互說。說完后坐好。)。

  1、說一說:(1)什么叫體積?常用的體積單位有哪些?

 。2)長方體、正方體的體積怎樣計算?如何用字母表示?

  長方體、正方體的體積=×()用字母表示()。

  2、求下面各圓的面積(只說出解題思路,不計算。)。

 。1)r=1厘米;(2)d=4分米;(3)c=6.28米。

  (二)揭示課題。

  你想知道課本第8頁左上方“柱子的體積”嗎?你想知道“一個圓柱形杯子能裝多少水”嗎?今天就來學(xué)習(xí)“圓柱的體積”。(板書課題)。

  二、設(shè)問導(dǎo)讀。

  請仔細(xì)閱讀課本第8—9頁的內(nèi)容,完成下面問題。

  (一)以小組合作完成1、2題。

 。1)圓柱的底面積變成了長方體的()。

 。2)圓柱的高變成了長方體的()。

 。3)圓柱轉(zhuǎn)化成長方體后,體積沒變。因為長方體的體積=()×(),所以圓柱的體積=()×()。如果用字母v代表圓柱的體積,s代表底面積,h代表高,那么圓柱的體積公式可用字母表示為()。

  [匯報交流,教師用教具演示講解2題]。

 。ǘ┆毩⑼瓿3、4題。

  先求底面積,列式計算()。

  再求體積,列式計算()。

  綜合算式()。

  4、要想知道“一個圓柱形杯子能裝多少水?”可以用杯子的“()×()”(杯子厚度忽略不計)。

  【要求:完成之后以小組互查,有爭議之處四人大組討論。】。

  教師根據(jù)學(xué)生做題情況挑選一些小組進(jìn)行匯報、交流,并對小組學(xué)習(xí)情況進(jìn)行評價。

  三、自我檢測。

  1、課本9頁試一試。

  2、課本9頁練一練1題(只列式,不計算)。

  【要求:完成后小組互查,教師評價】。

  四、鞏固練習(xí)。

  課本練一練的2、3、4題。

  【要求:組長先給組員講解題思路,然后小組內(nèi)共同完成】。

  教師進(jìn)行錯例分析。

  五、拓展練習(xí)。

  1、課本練一練的5題。

  【要求:先組內(nèi)討論確定解題思路,再完成】。

  六、課堂總結(jié),布置作業(yè)。

  1、總結(jié):這節(jié)我們利用轉(zhuǎn)化的方法,把圓柱轉(zhuǎn)化為長方體來推導(dǎo)其體積公式,切記用“底面積×高”來求圓柱的體積。

  2、作業(yè):課本練一練6題。

《圓柱的體積》教案5

  教學(xué)內(nèi)容:

  教材第8-9頁圓柱的體積公式,例4和“試一試”及“練一練”,練習(xí)二第1-4題。

  教學(xué)要求:

  1、使學(xué)生理解和掌握圓柱的體積計算公式,并能根據(jù)題里的條件,正確地求出圓柱的體積。

  2、培養(yǎng)學(xué)生初步的空間觀念和思維能力;讓學(xué)生認(rèn)識“轉(zhuǎn)化”的思考方法。

  教具準(zhǔn)備:

  圓柱體積演示教具。

  教學(xué)過程:

一、復(fù)習(xí)引新

  1、求下面各圓的面積(口答)

  (1)r=1厘米粉

 。2)d=4厘米

  (3)c=6.28米

  2、想一想,學(xué)習(xí)計算圓的面積時,是怎樣得出圓的面積計算公式的?

  3、提問:什么叫體積?常用的體積單位有哪些?

  4、已知長方體的底面積S和高h(yuǎn),怎樣計算長方體的體積?

  二、教學(xué)新課

  1、根據(jù)學(xué)過的體積概念,說說什么是圓柱的體積。

  2、怎樣計算圓柱的體積呢?我們能不能根據(jù)圓柱的底面可以像上面說的轉(zhuǎn)化成一個長方形,通過切、拼的方法,把圓柱轉(zhuǎn)化為已學(xué)過的立體圖形來計算呢?現(xiàn)在我們大家一起來討論。

  3、公式推導(dǎo)。

 。1)請同學(xué)們指出圓住體的底面積和高。

 。2)回顧圓面積公式的推導(dǎo)。(切拼轉(zhuǎn)化)

 。3)探索求圓柱體積的公式。

 。4)討論并得出結(jié)果。

  圓柱體通過切拼,圓柱體轉(zhuǎn)化成近似的()體。

  這個長方體的底面積與圓柱體的'底面積(),這個長方體的高與圓柱體的高(),這個長方體高與圓柱體的高()。

  因為長方體的體積等于底面積乘以高,所以,圓柱體的體積,計算公式是:()。

  用字母表示:()。

 。5)小結(jié)

  4、教學(xué)例4

  出示例4,審題。

  提問:你能獨立完成這題嗎?

  指名一人板演,其余學(xué)生做在練習(xí)本上。

  5、做練習(xí)二第1題。

  讓學(xué)生做在課本上。

  6、教學(xué)“試一試”一個圓柱的底面半徑是2分米,高是8米,求它的體積。

  指名一人板演,其余學(xué)生做在練習(xí)本上。

  三、鞏固練習(xí)

  做“練一練”第1、2題。

  讓學(xué)生做在練習(xí)本上。

  讓學(xué)生說一說這兩題列式有什么不同,為什么不一樣。

  四、課堂小結(jié)

  這節(jié)課學(xué)習(xí)了什么內(nèi)容?圓柱的體積怎樣計算,這個公式是怎樣得到的?

  五、布置作業(yè)

  課堂作業(yè):練習(xí)二第2、3題。

  家庭作業(yè):練習(xí)二第4題

《圓柱的體積》教案6

  教學(xué)目標(biāo):

  1、使學(xué)生能夠運用公式正確地計算圓柱的體積和容積。

  2、初步學(xué)會用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實際問題的能力

  3、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識。

  教學(xué)重點:

  掌握圓柱體積的計算公式。

  教學(xué)難點:

  靈活應(yīng)用圓柱的體積公式解決實際問題。

  教學(xué)過程:

  一、復(fù)習(xí)

  1、復(fù)習(xí)圓柱體積的推導(dǎo)過程

  長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。

  長方體的體積=底面積×高,所以圓柱的體積=底面積×高,即V=Sh。

  2、復(fù)習(xí)長方體、正方體的體積公式后,讓學(xué)生獨立完成練習(xí)三第6題求體積部分,并指名板演。

  二、解決實際問題

  1、練習(xí)三第4題。

  學(xué)生獨立練習(xí),強調(diào)選取有用信息,培養(yǎng)認(rèn)真審題習(xí)慣。

  2、練習(xí)三第5題。

 。1)指導(dǎo)學(xué)生變換公式:因為V=Sh,所以h=V÷S。也可以列方程解答。

 。2)學(xué)生選擇喜愛的方法解答這道題目。

  3、練習(xí)三第10題。

  指名說說解答第10題的思路:根據(jù)兩個圓柱的底面積相等這一條件,先求出其中一個圓柱的底面積。利用這個底面積再求出另一個圓柱的體積。

  4、練習(xí)三第8題。

 。1)學(xué)生讀題后,指名說說對題意的理解:求減少的土方石就是求月亮門所占的空間,而月亮門所占的空間是一個底面直徑為2米,高為0.25米的圓柱。

 。2)在充分理解題意后學(xué)生獨立完成,集體訂正。

  4、練習(xí)三第9題

  (1)學(xué)生獨立審題后完成。

  評講:要怎樣才能判斷出800ml的果汁夠倒三杯嗎?必須先求出什么?怎么求?(需先求出圓柱形玻璃杯的容積,用公式V=Sh)

  5、練習(xí)三第11題。

  此題既可以用外圓柱體積減內(nèi)圓柱的體積,也可以用圓環(huán)的面積乘高。

  (3)三、布置作業(yè)

  完成練習(xí)中未做完的習(xí)題

  教學(xué)反思

  第五課時特別關(guān)注

  練習(xí)三第4題,在教學(xué)中必須應(yīng)該特別關(guān)注。

  關(guān)注理由:

  1、有多余條件,是培養(yǎng)學(xué)生收集有用信息的契機。

  這道題中出現(xiàn)兩個圓柱體的高,分別是花壇的高0.8米和花壇里面填土的高0 .5米。學(xué)生該如何合理做出選擇呢,關(guān)鍵要通過問題來思考。因為問題是求“花壇中共需要填土多少方”,所以應(yīng)該選用“填土的高度是0.5米”這條數(shù)學(xué)信息。

  在課堂中,我還要求學(xué)生思考,如果要用上“0.8米”這個條件下,可以怎么改變問題。有的學(xué)生說“可以問花壇的體積是多少立方米”,還有的同學(xué)說“可以求花壇中空間的體積是多少立方米”。通過這樣的訓(xùn)練,能夠有效培養(yǎng)學(xué)生收集、處理信息的能力,同時提升他們綜合分析問題的能力。

  2、有容易忽視的條件,是培養(yǎng)學(xué)生認(rèn)真審題的契機。

  一般習(xí)題中的數(shù)據(jù)是用阿拉伯?dāng)?shù)字呈現(xiàn),可這道題的'問題是求“兩個花壇中共需要填土多少方”,這里隱含著一個極易被學(xué)生忽視的數(shù)據(jù)“兩個”。其實,配套的插圖中也明顯繪制出了2個花壇,但在做題中許多學(xué)生仍舊會出錯。所以,應(yīng)抓住此題,培養(yǎng)學(xué)生良好審題的習(xí)慣。如在做這類習(xí)題時,建議首先將單位圈出來,以確保列式時單位統(tǒng)一。還可以將問題劃橫線,以提醒自己將生活問題轉(zhuǎn)化為數(shù)學(xué)問題等。

  學(xué)生巧解

  ——巧求削去部分的體積

  今天,全班同學(xué)做這樣一題:一塊長方體木塊體積是20立方分米,它的底面為正方形,邊長為2分米,F(xiàn)在,將它削成一個的圓柱體,求削去的部分是多少立方分米?

  我因為做得既對又快,最終獲得全班第一名的成績。通過對比,我發(fā)現(xiàn)自己的方法比同學(xué)們巧妙。

  同學(xué)們的解法是先求長方體的高(即圓柱體的高),用20÷(2×2)=5分米,然后求圓柱體的體積,列式為3.14×(2÷2)2×5=15.7立方分米,最后求削去部分的體積是20—15.7=4.3平方分米。

  而我在做這一題時,想起上學(xué)期在正方形中畫的圓,圓的面積占正方形面積的157/200的結(jié)論。因為直柱體的體積都可以寫成底面直徑乘高,而長方體和削成的圓柱體高相等,所以削成的圓柱體體積也應(yīng)該是長方體體積的157/200。所以直接用20×(1—157/200)也等于4.3立方分米。

《圓柱的體積》教案7

  教學(xué)目標(biāo):

  1、知識與技能:通過用切割拼合的方法借助長方體的體積公式推導(dǎo)出圓柱的體積公式,使學(xué)生理解圓柱的體積公式的推導(dǎo)過程能夠運用公式正確地計算圓柱的體積。

  2、過程與方法:讓學(xué)生經(jīng)歷觀察、實驗、猜想、證明等數(shù)學(xué)活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗數(shù)學(xué)研究法。

  3、情感態(tài)度與價值觀:通過圓柱體積計算公式的推導(dǎo)、運用的過程,體驗數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。

  教學(xué)重點:掌握和運用圓柱體積計算公式進(jìn)行正確計算。

  教學(xué)難點:理解圓柱體積計算公式的推導(dǎo)過程,體會“轉(zhuǎn)化”方法的價值。

  教學(xué)過程:

  一、情景導(dǎo)入:

  1、教師:(出示)多么溫馨的場面,今天是亮亮和爺爺?shù)纳眨腋5囊患胰藝陲堊狼跋碛弥谰萍央,你能觀察到今天的飯菜比平時多了什么嗎?

  學(xué)生:1、比平日多了兩個蛋糕。

  2、兩個蛋糕一個大一個小。

  3、蛋糕都是圓柱形的。

  2、教師:同學(xué)們觀察的很仔細(xì),那你能根據(jù)剛學(xué)過的知識說一說爺爺?shù)案廨^大意味著什么嗎?

  學(xué)生:蛋糕大,意味著圓柱的體積大。

  3、教師:那你還知道什么是圓柱的體積嗎?

  學(xué)生:圓柱的體積就是圓柱體占空間的大小。

  4、教師:兩個蛋糕的體積相差較多,我們?nèi)菀妆容^出那個體積大,如果體積相差較小我們怎么比較呢?

  學(xué)生:拿出準(zhǔn)備的圓柱體進(jìn)行比較,討論,各小組分別說明比較的方法并展示。

  教師:板書:圓柱的體積

  二、課上探究

  1、教師:同學(xué)們回憶一下我們還學(xué)過那些立體圖形?

  學(xué)生:還學(xué)過正方體和長方體。

  教師:它們的體積怎樣計算?(多媒體出示長方體)有什么共同點?

  學(xué)生:長方體的體積=長×寬×高,長×寬=底面積,V=sh;正方體的體積=棱長×棱長×棱長,棱長×棱長=底面積,V=sh;共同點都是底面積乘高。

  2、猜測圓柱的`體積與什么有關(guān)

  師:拿出圓柱體,讓學(xué)生猜想圓柱體積與什么有關(guān)。

  生1、圓柱的體積與圓柱的高有關(guān)。

  生2、圓柱的體積與圓柱的底面積有關(guān)。

  生3、圓柱的體積與圓柱的底面周長有關(guān)。

  生4、圓柱的體積與圓柱的底面半徑有關(guān)。

  3、推導(dǎo)圓柱體積公式

 、賻: 同學(xué)們觀察圓柱的底面是一個圓,學(xué)習(xí)圓面積時,我們是把圓轉(zhuǎn)化成哪種圖形來求面積的?

  生: 把圓轉(zhuǎn)化成近似長方形來求面積的。

 、趲煟何覀円黄饋砘貞洶褕A轉(zhuǎn)化成近似長方形的過程,()

  師: 你發(fā)現(xiàn)了什么?

  生:我發(fā)現(xiàn)把圓平均分成的份數(shù)越多,拼成的圖形越接近長方形。

  ③師:圓柱可以看成多個圓片摞在一起,把圓剪拼成的每個近似長方形也摞在一起。我們就把圓柱轉(zhuǎn)化成我們以前學(xué)過的哪種立體圖形呢?

  生:把圓柱轉(zhuǎn)化成近似的長方體。

 、軒熡脠A柱體演示轉(zhuǎn)換過程,讓學(xué)生說怎樣轉(zhuǎn)換的。

  生:把圓柱平均分成16份拼成一個近似的長方體。

 、輲: 為了讓大家看的更清楚,我們再演示一下這個轉(zhuǎn)化過程。

  再次演示把圓柱等分16等份,拼成近似的長方體。

  再出示32等份的圓柱體拼成的近似的長方體,讓學(xué)生觀察,發(fā)現(xiàn)了什么?

  生:分成的份數(shù)越多,拼成的圖形越接近長方體。

 、迬煟撼鍪緢A柱體和拼成的長方體,讓學(xué)生觀察,拼好的長方體與原來的圓柱比較,發(fā)現(xiàn)了什么?

  學(xué)生分組討論,匯報:

  生:長方體的高和圓柱的高相等。

  生:長方體的底面積和圓柱的底面積相等。

  ⑦師:你是怎么想的?

  生:剛才我們復(fù)習(xí)了把圓轉(zhuǎn)化成長方形,所以圓柱的底面積和長方體的底面積相等。

 、鄮煟涸俅斡脠A柱拼成近似長方體的過程,讓學(xué)生仔細(xì)觀察圓轉(zhuǎn)化成長方形后,面積相等。

  生:長方體的長是圓柱底面周長的一半,寬是圓柱底面半徑

  師:演示 長方體的體積=底面積×高

 、釒煟耗敲磮A柱的體積等于什么呢?

  生:圓柱的體積=底面積×高

 、庀旅嫖覀冊僖黄鸹貞浺幌罗D(zhuǎn)化的過程,()

  讓學(xué)生獨立填答案,匯報:

  三、我們知道了圓柱的體積公式,下面我們就來解決一些實際問題。

《圓柱的體積》教案8

  探究目標(biāo):

  1、組織學(xué)生開展測量、計算、估測等數(shù)學(xué)實踐活動,使學(xué)生進(jìn)一步掌握圓柱體積計算公式,并能運用公式正確地計算圓柱的體積。

  2、在探索空間與圖形的過程中,培養(yǎng)學(xué)生初步的空間觀念及實踐能力,同時結(jié)合具體的情境培養(yǎng)其估測意識。

  3、使學(xué)生學(xué)會與他人合作,并能比較清楚地表達(dá)和交流解決問題的過程和結(jié)果。

  4、讓學(xué)生體驗解決策略的多樣性,不斷激發(fā)其對數(shù)學(xué)的好奇心和求知欲,使其積極地參與數(shù)學(xué)學(xué)習(xí)活動。

  教學(xué)重難點:

  學(xué)生會應(yīng)用圓柱體積公式解決實際問題。

  探究過程:

  一、遷移引入

  提問:一個圓柱的底面積是80平方厘米,高是20厘米,求它的體積。

  提問:如果已知的是底面半徑和高,該怎么求呢?

  二、自主探究

  1、出示長方體魚缸。

  要計算這個長方體魚缸能裝多少水,就是求什么?

  怎樣求這個長方體的容積呢?

  2、出示圓柱形魚缸。

 、殴罍y。這個圓柱形魚缸的容積大約是多少?

 、撇僮鳌R報。如果忽略容器的壁厚,這個圓柱形魚缸的容積到底是多少呢?學(xué)生分小組進(jìn)行操作計算,各小組派代表演示操作過程,并展示計算過程。

  學(xué)生可能的回答有:

  生1:這個圓柱的底面周長是94.5厘米,它的高是12厘米,計算過程如下:①94.5÷3.14÷2≈15.0(厘米)②3.14×152×12=8478(立方厘米)

  生2:我們小組測量的是底面直徑和高。底面直徑長30厘米,高是12厘米,計算過程如下:3.14×(30÷2)2×12=8478(立方厘米)

  生3:我們測量的是底面半徑和高。3.14×152×12=8478(立方厘米)

 、仍u價。

  組織學(xué)生間進(jìn)行評價。你最喜歡哪個小組的操作方案?為什么?每一步列式的意義是什么?使學(xué)生進(jìn)一步掌握圓柱體積的計算方法。

 、煞此。引導(dǎo)學(xué)生將實際計算結(jié)果與自己的估測結(jié)果進(jìn)行對比。自己矯正偏差。

 、恃由。如果每立方分米水重1千克,這個魚缸大約能裝水多少千克?

  3、自學(xué)例題。

  組織學(xué)生自學(xué)課本例5。同桌的`兩名同學(xué)結(jié)合例5的解答過程提出相關(guān)的數(shù)學(xué)問題,進(jìn)行互問互答。

  三、鞏固練習(xí)

  做教科書第80頁“做一做”中的第2題、練習(xí)二十一的第5題。

  學(xué)生獨立完成,指名板演,集體評講。

  四、創(chuàng)意作業(yè)

  學(xué)生綜合運用所學(xué)的知識,進(jìn)行計算、繪圖、裁剪、粘貼等多項操作活動。

  在一張長30厘米,寬20厘米的長方形紙上進(jìn)行合理的裁剪,做一個無蓋的圓柱形筆筒。比一比,誰做的筆筒容積最大?

《圓柱的體積》教案9

  設(shè)計說明

  本節(jié)課是在學(xué)生已經(jīng)了解了圓柱的特征,掌握了長方體體積的計算方法以及圓的面積計算公式的推導(dǎo)過程的基礎(chǔ)上進(jìn)行教學(xué)的。根據(jù)學(xué)生的認(rèn)知水平和已有經(jīng)驗,本節(jié)課在教學(xué)設(shè)計上體現(xiàn)了以下幾個特點:

  1.創(chuàng)設(shè)問題情境,點燃探索激情。

  基于“數(shù)學(xué)來源于生活,又應(yīng)用于生活”這一理念,教學(xué)過程中通過呈現(xiàn)身邊圓柱的體積問題,使學(xué)生感受到數(shù)學(xué)與現(xiàn)實生活的密切聯(lián)系,認(rèn)識到學(xué)習(xí)圓柱的體積計算公式的必要性,從而激發(fā)了學(xué)生的探究興趣,使學(xué)習(xí)成為學(xué)生自覺的需求。

  2.注重直觀教學(xué),引導(dǎo)合作遷移。

  數(shù)學(xué)理論的表述往往是抽象的,它影響了學(xué)生數(shù)學(xué)思維的發(fā)展,而引導(dǎo)學(xué)生從觀察和分析有關(guān)具體實物入手,就比較容易理解概念的本質(zhì)特征。所以,教學(xué)中不但設(shè)計了通過排水法理解圓柱體積的實驗,而且還借助教具演示、課件演示等直觀教學(xué)手段幫助學(xué)生推導(dǎo)出圓柱體積的計算公式,使學(xué)生從感性認(rèn)識上升到理性認(rèn)識,體會到知識的由來。

  3.滲透數(shù)學(xué)思想,發(fā)展數(shù)學(xué)思考。

  在本節(jié)課的教學(xué)中,充分利用教材內(nèi)容,對學(xué)生有效地進(jìn)行轉(zhuǎn)化思想的滲透,使學(xué)生在體會運用轉(zhuǎn)化思想可以化難為易、化復(fù)雜為簡單、化生疏為熟悉等作用的同時,參與數(shù)學(xué)活動,提高解決問題的能力。

  課前準(zhǔn)備

  教師準(zhǔn)備 PPT課件

  學(xué)生準(zhǔn)備 圓柱形實物

  教學(xué)過程

  ⊙情境引入

  1.操作感知體積的意義。

  通過出示一個裝了半杯水的燒杯,引導(dǎo)學(xué)生猜測:在燒杯中投入一個圓柱形物體,會有什么現(xiàn)象發(fā)生?

  (水面升高或者水會溢出來)

  師:為什么會有這種現(xiàn)象發(fā)生?

  預(yù)設(shè)

  生1:圓柱占有一定的空間。

  生2:圓柱占據(jù)了原來水占有的空間。

  生3:圓柱是立體圖形,它具有一定的體積。

  2.討論、概括圓柱的體積的意義。

  師:你認(rèn)為什么是圓柱的體積?

  (圓柱所占空間的大小,叫做圓柱的體積)

  3.引入:這節(jié)課我們就一起來探究圓柱體積的計算方法。

  (板書課題:圓柱的體積)

  設(shè)計意圖:通過操作、演示,使學(xué)生在猜測、觀察、討論中加深對抽象的“體積”概念的`理解,自主概括出圓柱的體積的意義,為下面的探究活動做好充分的準(zhǔn)備。

  ⊙自主探究

  1.探究影響圓柱的體積大小的相關(guān)因素。

  (1)課件出示兩個大小不等的圓柱。

  師:哪個圓柱的體積比較大?為什么?

  預(yù)設(shè)

  生1:左面的圓柱的體積比較大,因為它高一些。

  生2:右面的圓柱的體積比較大,因為它粗一些。

  生3:不好比較。因為左面的圓柱雖然高,但比較細(xì);右面的圓柱雖然粗,但比較矮。

  (2)討論、概括。

  師:圓柱的體積的大小與哪些因素有關(guān)?

  (圓柱的體積的大小與圓柱的高及圓柱的底面積的大小有關(guān))

《圓柱的體積》教案10

  教學(xué)內(nèi)容:人教版數(shù)學(xué)第十二冊《圓柱的體積》。

  教學(xué)目的:

  1、理解圓柱體積的意義。

  2、初步掌握圓柱體積的計算方法,會計算圓柱的體積。

  3、了解圓柱體積的推導(dǎo)過程。

  4、通過教學(xué),培養(yǎng)學(xué)生合理猜測能力、靈活的計算能力,發(fā)展學(xué)生的空間觀念、提高運用所學(xué)知識解決簡單的實際問題的能力。

  教學(xué)重點:會計算圓柱的體積。圓柱體積計算公式的推導(dǎo)。

  教學(xué)難點:圓柱體積計算公式的推導(dǎo)。

  教具準(zhǔn)備:圓柱體、圓柱形的胡蘿卜、刀等。

  一、復(fù)習(xí)舊知,調(diào)動學(xué)生的積極性。

  師:請同學(xué)們回憶,圓的面積公式是怎樣推導(dǎo)出來的?

  生: (1、將圓分成若干等份,拼成一個近似長方形。2、把圓分的等份越多就越接近長方形。)

  師:鼓勵。(方向要明確,有促進(jìn),鼓勵學(xué)生積極參與,參與合作)

  多媒體顯示:把圓平均分成若干份,拼成一個近似長方形。

  師:什么叫體積?常用的體積單位有哪些?(立方厘米、立方分米、立方米等)

  生:略。

  師:(表揚,能比劃一下1立方厘米、1立方分米、1立方米多大嗎?)

  師:長方體的體積怎樣計算?

  生:略。 師板書。長方體的體積=底面積×高

  二、導(dǎo)入新課。

  1、師:根據(jù)體積的'含義,想一想,什么叫圓柱的體積?

  生:略

  師:(出示任意圓柱)你能估計一下這個圓柱的體積嗎?(師相機鼓勵、指導(dǎo),更多的學(xué)生參與。)

  師:拿出你們準(zhǔn)備的圓柱,同桌估計一下體積,記錄下來。

  師:如果你想得到準(zhǔn)確的體積,該怎樣計算?(學(xué)生去猜測,師進(jìn)行指導(dǎo)、鼓勵。)

  2、(引導(dǎo)學(xué)生完成猜測體積公式)

  (如果學(xué)生猜對)師:怎樣證明你的猜測是對的呢?(師要等待)

  (如果學(xué)生不能回答)師:能轉(zhuǎn)化成我們學(xué)過的立體圖行嗎?

  3、學(xué)生嘗試。

 。ǜ餍〗M合作,分好工,用課前準(zhǔn)備好的蘿卜或其他試切拼,教師盡可能多參加每個小組的活動,進(jìn)行指導(dǎo)。)

 。ń處煴M可能地參加與多組活動,并指導(dǎo)組與組之間的互評)

  4、集體交流。

  師:自己認(rèn)為成功的小組請舉手,不管是成功還是失敗,我們都能從中受到一些啟發(fā)。失敗了,下次再來。請成功的小組介紹一下你們是怎樣拼的。

  生:略。

  師:鼓勵。指導(dǎo)。

  師:切拼前后,什么變了?什么沒變?(小組討論)

  (教師相機教學(xué))板書:圓柱的體積=底面積×高

  師:這樣的證明你們信嗎?(信 、不信)

  師:懷疑好,為什么?(辯論,時間不要長。讓學(xué)生大膽談自己的想法,培養(yǎng)學(xué)生的能力。)

  (字母推導(dǎo))

  三、知識的應(yīng)用。

  師:計算圓柱的體積需要哪兩個條件?(略)

 。ǔ鍪纠},學(xué)生試做)指名(后進(jìn)生兩兩合作)板演。學(xué)生評價,注意保護(hù)不足者。

  師:認(rèn)為自己沒有錯誤的同學(xué)舉手。(回應(yīng)課開始的估計,拿出引入時估算體積的圓柱。)

  師:如果請你測量所需要的數(shù)據(jù),你打算測哪些數(shù)據(jù)比較方便,底面積嗎?

 。ó(dāng)然底面積不能一下測出)(半徑或直徑,和高)

  師:同桌合作測量并計算你手里的圓柱體積。(完后,介紹結(jié)果并和你的估計進(jìn)行比較,看是否接近。)(小于一百立方厘米的舉手。)

  四、小結(jié)。

  師:通過今天的學(xué)習(xí)你們有哪些收獲?還有哪些問題?

 。ㄉ〗Y(jié)。師補充。)

《圓柱的體積》教案11

  教學(xué)目標(biāo):

  1、知識技能

  運用遷移規(guī)律,讓學(xué)生探索并掌握圓柱體積的計算方法,并能運用計算公式解決簡單的實際問題。

  2、過程方法

  讓學(xué)生經(jīng)歷觀察、實驗、猜想、證明等數(shù)學(xué)活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗數(shù)學(xué)研究的方法。

  3、情感態(tài)度價值觀

  通過圓柱體積計算公式的推導(dǎo)、運用的過程,體驗數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。

  教學(xué)重點:

  圓柱體體積的計算公式的推導(dǎo)過程及其應(yīng)用。

  教學(xué)難點:

  理解圓柱體體積公式的推導(dǎo)過程。

  教學(xué)準(zhǔn)備:圓柱體積公式推導(dǎo)演示學(xué)具、多媒體課件。

  教學(xué)過程:

  一、復(fù)習(xí)導(dǎo)入

  同學(xué)們,我們的圖形世界十分豐富,回憶一下,什么叫做物體的體積?我們已經(jīng)學(xué)習(xí)了哪些立體圖形的體積?怎樣計算長方體和正方體的體積?長方體

  的體積和正方體的體積的`通用公式是什么呢?用字母怎樣表示?

  二、圖柱轉(zhuǎn)化,自主探究,驗證猜想。

 。ㄒ唬┎孪搿

  1、大家看圓柱的底面是一個圓形,在學(xué)習(xí)圓面積計算時,我們是把圓轉(zhuǎn)化成哪種圖形來計算的?(演示課件:圓轉(zhuǎn)化成長方形,推導(dǎo)圓面積公式的過程。)

  [數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識經(jīng)驗基礎(chǔ)之上。教師由復(fù)習(xí)圓面積公式的推導(dǎo)過程入手,實現(xiàn)知識的遷移。]

  2、引發(fā)思考:我們能否把圓柱體也轉(zhuǎn)化成學(xué)過的立體圖形來計算它的體積呢?如果能,猜一猜能轉(zhuǎn)化成哪種立體圖形?揭示課題:圓柱的體積。

 。ǘ┎僮黩炞C。

  1、請學(xué)生拿出圓柱體的演示學(xué)具,以小組為單位,聯(lián)想圓形面積的轉(zhuǎn)化方式,合作探究將圓柱轉(zhuǎn)化為長方體的方法。

  在操作時,學(xué)生分組邊操作邊討論以下問題:

 、倨闯傻慕崎L方體的體積與原來的圓柱體積有什么關(guān)系?

 、谄闯傻慕崎L方體的底面積與原來圓柱的底面積有什么關(guān)系?

  ?.拼成的近似長方體的高與原來的圓柱的高有什么關(guān)系?

  2、小組代表匯報

 。▽W(xué)生按照自己的方式來轉(zhuǎn)化,會有多種轉(zhuǎn)化方法,教師適時加以鼓勵)

  3、電腦演示操作

 。1)電腦演示圓柱體轉(zhuǎn)化成長方體的過程:

  仔細(xì)觀察:圓柱體轉(zhuǎn)化成一個長方體后,長方體的長相當(dāng)于圓柱的什么?長方體的寬和高又相當(dāng)于圓柱的什么?

  動畫演示:把圓柱的底面平均分成32份、64份,切開后拼成的物體會有什么變化?

  (分的分?jǐn)?shù)越多,拼成的圖形就越接近長方體)

 。2)根據(jù)學(xué)生的觀察、分析、推想,老師完成板書:

  長方體的體積=底面積×高

  圓柱的體積=底面積×高

  V=Sh

 。3)你的猜想正確嗎?學(xué)生齊讀圓柱的體積計算公式。

  三、練習(xí)鞏固,靈活應(yīng)用

  闖關(guān)1.一根圓柱形鋼材,底面積是75平方厘米,長是90厘米。它的體積是多少?

  讓學(xué)生試做,集體反饋。

  闖關(guān)2.想一想:如果已知圓柱底面的半徑(r)和高(h),圓柱的體積的計算公式是什么?如果已知圓柱底面的直徑(d)和高(h)呢?如果已知圓柱的底面周長(C)和高(h)呢?

  學(xué)生討論、交流、匯報。

  小結(jié):解決以上問題的關(guān)鍵是先求出什么?(生:底面積)

  闖關(guān)3.下面這個杯子能不能裝下這袋奶?(杯子的數(shù)據(jù)是從里面測量得到的。)學(xué)生在練習(xí)本上獨立完成,集體反饋。

  四、課堂小結(jié)

  學(xué)習(xí)本節(jié)課你有哪些收獲?還有哪些疑惑?(生匯報收獲)

  五、布置作業(yè)

  教科書第21頁練習(xí)三第1-4題。

  板書設(shè)計:

  圓柱的體積

  長方體的體積=底面積×高

  圓柱的體積=底面積×高

  V= Sh

《圓柱的體積》教案12

  教學(xué)目標(biāo):

  1.知識與技能:運用遷移規(guī)律,引導(dǎo)學(xué)生借助圓面積計算公式的推導(dǎo)方法來推導(dǎo)圓柱的體積計算公式,會用圓柱的體積公式計算圓柱形物體的體積。

  2.方法與過程:經(jīng)歷猜測、驗證、合作、動手操作等過程,體驗和理解圓柱體體積公式的推導(dǎo)過程。

  3情感、態(tài)度、價值觀:創(chuàng)設(shè)情境,激發(fā)學(xué)生學(xué)習(xí)的積極性。讓學(xué)生在主動學(xué)習(xí)的基礎(chǔ)上,逐步學(xué)會轉(zhuǎn)化的數(shù)學(xué)思想和數(shù)學(xué)法,培養(yǎng)學(xué)生解決實際問題的能力和培養(yǎng)學(xué)生抽象、概括的思維能力。

  教學(xué)重點和難點:

  圓柱體積公式推導(dǎo)過程;正確理解圓柱體積公式推導(dǎo)過程。

  教 具:

  圓柱的體積公式演示教具,圓柱的體積公式演示課件

  教學(xué)過程:

  一、教學(xué)回顧

  1、交代任務(wù):這節(jié)課我們來學(xué)習(xí)《圓柱的體積》。

  2、回憶導(dǎo)入

  (1)、請大家想一想,我們在學(xué)習(xí)圓的面積時,是怎樣把圓變成已學(xué)過的圖形再計算面積的?

 。2)、我們都學(xué)過那些立體圖形的體積公式。

  二、積極參與 探究感受

  1、猜測圓柱的體積和那些條件有關(guān)。(電腦演示)

  2、.探究推導(dǎo)圓柱的體積計算公式。

  小組合作討論:

  (1)將圓柱體切割拼成我們學(xué)過的什么立體圖形?

  (2)切拼前后的兩個物體什么變了?什么沒變?

  (3)切拼前后的兩個物體有什么聯(lián)系?

  課件演示拼、組的過程,同時演示一組動畫(將圓柱底面等分成32份、64份??),讓學(xué)生明確:分成的扇形越多,拼成的立體圖形就越接近于長方體。

 、侔褕A柱拼成長方體后,形狀變了,體積不變。(板書:長方體的`體積=圓柱的體積)

 、谄闯傻拈L方體的底面積等于圓柱的底面積,高就是圓柱的高。配合回答,演示課件,閃爍相應(yīng)的部位,并板書相應(yīng)的內(nèi)容。)

 、蹐A柱的體積=底面積×高 字母公式是V=Sh(板書公式)

  2、練一練:一根圓柱形木料,底面積為75平方厘米,長90厘米,它的體積是多少?

  3、要用這個公式計算圓柱的體積必須知道什么條件?

  三、練習(xí)

  1、填空

  (1)、圓柱體通過切拼轉(zhuǎn)化成近似的 ( ) 體。這個長方體的底面積等于圓柱體的( ),這個長方體的高等于圓柱體() 。因為長方體的體積等于( ),所以,圓柱體的體積等于( )用字母表示() 。

 。2)、底面積是 10平方米,高是2米,體積是( )。

 。3)、底面半徑是2分米,高是5分米,體積是( )。 2討論:

  (1)已知圓柱底面的半徑和高,怎樣求圓柱的體積

  V= 兀r2× h

  (2)已知圓柱底面的直徑和高,怎樣求圓柱的體積

  V=兀(d÷2)2×h

  (3)已知圓柱底面的周長和高,怎樣求圓柱的體積

  V=兀(C÷!2) ×h

  3、練習(xí):已知半徑和高求體積,已知直徑和高求體積。

  四、小結(jié)或質(zhì)疑

  五、作業(yè)

  板書設(shè)計:

  圓柱的體積

  長方體的體積=底面積x高

  圓柱的體積=底面積x高

  V=Sh

《圓柱的體積》教案13

  教學(xué)內(nèi)容:

  九年義務(wù)教育六年制第十二冊第36~37頁例4、例5及做一做,練習(xí)八的第1、2題。

  教學(xué)目標(biāo):

  1、理解圓柱體體積公式的推導(dǎo)過程,并會正確地計算出圓柱的體積。

  2、培養(yǎng)學(xué)生的遷移能力、邏輯思維能力,并進(jìn)一步發(fā)展空間觀念。

  3、引導(dǎo)學(xué)生探索和解決問題,體驗轉(zhuǎn)化及極限的思想方法。

  教學(xué)重點:圓柱體體積的計算.

  教學(xué)難點:理解圓柱體體積公式的推導(dǎo)過程.

  教具:多媒體課件、圓柱形容器、水、橡皮泥。

  教學(xué)過程:

  一、激凝導(dǎo)入

  師: 大家都知道,水是生命之源!我們要養(yǎng)成節(jié)約用水的好習(xí)慣?汕皟商,老師家的水龍頭出了問題,你們看,一刻鐘就滴了這么多水。(出示裝有水的圓柱容器。)

 。1)啟發(fā)思考:容器里面的水形成了什么形狀?(圓柱)你能知道這些水的體積嗎?你能想什么辦法知道它的體積?

 。2)生回答。

  2、出示橡皮泥捏成的圓柱體。

  那你有辦法求出這個圓柱體橡皮泥的體積嗎?

  生(熱情的):老師將它捏成長方體或正方體就可以了!

  3、創(chuàng)設(shè)問題情境。

  師小結(jié):這么說同學(xué)們都有辦法將一些圓柱形的物體轉(zhuǎn)化為長方形或正方體來求它們的體積,大家真了不起!那如果我們要求某些建筑如(出示課件:人民大會堂東門前的門柱和壓路機大前輪)雄偉的人民大會堂東門前的一個圓柱形門柱的體積,或者求壓路機圓柱形大前輪的體積,還能用剛才同學(xué)們想出來的辦法嗎?(不能)

  那怎么辦?

  學(xué)生試說出自己的辦法。

  師:看起來前面這些方法雖然可行,但有一定的局限性,我們必須找到一個解決任意圓柱體積的方法才行,是不是?今天,就讓我們來共同研究解決任意圓柱體積的方法。(板書課題:圓柱的體積)

  二、經(jīng)歷體驗、探究新知

  1、推導(dǎo)圓柱的體積公式。

  師:你們打算怎么去研究圓柱的體積?

  小組同學(xué)討論研究的方法。

  2、學(xué)生動手操作感知

 。1)學(xué)生以小組為單位操作體驗。(操作學(xué)具,進(jìn)行拼組)。

 。2)學(xué)生小組匯報交流:

  近似長方體的體積等于圓柱的體積;近似長方體的底面積等于圓柱的.底面積;近似長方體的高就是圓柱的高。根據(jù)長方體的體積等于底面積乘高,得出圓柱體的體積也等于底面積乘高。。。。。。

 。3)想像:如果把圓柱像這樣等分成32份、64、128份后再拼起來,會怎么樣?有怎樣的變化趨勢?分成無數(shù)份呢?(平均分的份數(shù)越多,拼起來的近似長方體的長越近似于直線,這樣整個圖形越近似于長方體。如果照這樣分成無限多份,拼出的圖形就是長方體)

  3、教師課件演示圓柱轉(zhuǎn)化成長方體的過程。

  4、師生共同推導(dǎo)出圓柱的體積公式:

  長方體的體積=底面積高

  圓柱的體積=底圓柱面積高

  V = Sh

  5、鞏固公式

 、賄、S、h各表示什么?

 、谥滥男l件就可以求圓柱的體積?

  а、知道底面積和高可以直接用公式計算圓柱的體積;

  b、知道底面半徑和高,可以先計算出底面積,再計算體積;

  c、知道底面直徑和高,要先算出半徑,再算出底面積,最后才能計算出圓柱的體積。

  學(xué)生回答后師板書。

  6、教學(xué)例4、例5。

  課件分別出示例4、例5,讓學(xué)生找出題中的條件和問題,然后獨立完成,集體訂正。

  三、實踐練習(xí)

  1、出示課件:人民大會堂東門前的門柱和壓路機大前輪的有關(guān)數(shù)據(jù)求出它的體積。

  2、拓展延伸:同學(xué)們到工廠參加社會實踐。工人師傅拿出一塊長、寬、高分別是6厘米、5厘米、4厘米的長方體,問:同學(xué)們,現(xiàn)在我們要把這塊木料加工成一個體積最大的圓柱體,你們想一想,圓柱的底面直徑和高應(yīng)是多少?小林想了想說:我知道了。

  同學(xué)們,你們知道小林是怎樣想的嗎?

  四、課堂總結(jié);

  通過本節(jié)課的學(xué)習(xí),你有什么收獲?

《圓柱的體積》教案14

  教學(xué)內(nèi)容:

  P19-20頁例5、例6及補充例題,完成“做一做”及練習(xí)三第1~4題。

  教學(xué)目標(biāo):

  1、通過用切割拼合的方法借助長方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運用公式正確地計算圓柱的體積和容積。

  2、初步學(xué)會用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實際問題的能力

  3、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識。

  教學(xué)重點:

  掌握圓柱體積的計算公式。

  教學(xué)難點:

  圓柱體積的計算公式的推導(dǎo)。

  教學(xué)過程:

  一、復(fù)習(xí)

  1、復(fù)習(xí)圓面積計算公式的推導(dǎo)方法及過程。

  2、什么叫物體的體積?長方體、正方體的體積公式是什么?(長方體的體積=長×寬×高,正方體的體積=棱長3,長方體和正方體體積的統(tǒng)一公式=底面積×高)

  二、新課

  1、圓柱體積計算公式的推導(dǎo)。

  (1)用將圓轉(zhuǎn)化成長方形來求出圓的面積的方法來推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個近似長方體的立體圖形——課件演示)

 。2)由于我們分的不夠細(xì),所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。(課件演示將圓柱細(xì)分,拼成一個長方體)

 。3)通過觀察,使學(xué)生明確:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。(長方體的體積=底面積×高,所以圓柱的體積=底面積×高,V=Sh)

  2、教學(xué)補充例題

  (1)出示補充例題:一根圓柱形鋼材,底面積是50平方厘米,高是2.1米。它的體積是多少?

 。2)指名學(xué)生分別回答下面的問題:

  ① 這道題已知什么?求什么?

 、 能不能根據(jù)公式直接計算?

  ③ 計算之前要注意什么?(計算時既要分析已知條件和問題,還要注意要先統(tǒng)一計量單位)

  (3)出示下面幾種解答方案,讓學(xué)生判斷哪個是正確的.

 、賄=Sh

  50×2.1=105(立方厘米)

  答:它的體積是105立方厘米。

 、2.1米=210厘米

  V=Sh

  50×210=10500(立方厘米)

  答:它的體積是10500立方厘米。

 、50平方厘米=0.5平方米

  V=Sh

  0.5×2.1=1.05(立方米)

  答:它的體積是1.05立方米。

 、50平方厘米=0.005平方米

  V=Sh

  0.005×2.1=0.0105(立方米)

  答:它的體積是0.0105立方米。

  先讓學(xué)生思考,然后指名學(xué)生回答哪個是正確的解答,并比較一下哪一種解答更簡單.對不正確的第①、③種解答要說說錯在什么地方.

  (4)做第20頁的“做一做”。

  學(xué)生獨立做在練習(xí)本上,做完后集體訂正.

  3、引導(dǎo)思考:如果已知圓柱底面半徑r和高h(yuǎn),圓柱體積的計算公式是怎樣的?(V=πr2h)

  4、教學(xué)例6

 。1)出示例5,并讓學(xué)生思考:要知道杯子能不能裝下這袋牛奶,得先知道什么?(應(yīng)先知道杯子的容積)

 。2)學(xué)生嘗試完成例6。

 、 杯子的底面積:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

 、 杯子的容積:50.24×10=502.4(cm3)=502.4(ml)

  5、比較一下補充例題、例6有哪些相同的地方和不同的地方?(相同的是都要用圓柱的體積計算公式進(jìn)行計算;不同的是補充例題已給出底面積,可直接應(yīng)用公式計算;例6只知道底面直徑,要先求底面積,再求體積.)

  三、鞏固練習(xí)

  1、做第21頁練習(xí)三的第1題.

  2、練習(xí)三的第2題.

  這兩道題分別是已知底面半徑(或直徑)和高,求圓柱體積的習(xí)題.要求學(xué)生審題后,知道要先求出底面積,再求圓柱的體積。

  四、布置作業(yè)

  練習(xí)三第3、4題。

  通過批閱作業(yè),發(fā)現(xiàn)圓柱體的表面積正確率極低,主要有幾方面原因:

  1、計算錯誤;

  2審題不認(rèn)真,單位不統(tǒng)一;

  3、靈活解決問題時,沒能正確判斷所求面積到底包含哪幾部分。

  為提升正確率,所以今天補充了一節(jié)是練習(xí)課,主要是指導(dǎo)學(xué)生完成教材中的習(xí)題。在此,想談?wù)劸毩?xí)二的第11、19題。

  第11題教材只要求學(xué)生根據(jù)切面形狀進(jìn)行連線,其實這題應(yīng)該充分利用挖掘,不僅培養(yǎng)學(xué)生的空間觀念,同時還可提升學(xué)生解決實際問題的能力。所以在教學(xué)中,我補充了如下練習(xí):

 。1將一根高5分米的圓柱形木料沿底面直徑垂直切成兩部分,(如11題第2幅圖),這時表面積比原來增加了40平方分米。這根圓柱形木料原來的表面積是多少平方分米?

 。2一個圓柱的側(cè)面展開是一個正方形,正方形的邊長是12.56分米,求這個圓柱體的表積。

  第19題解決決起來很繁瑣,雖然課堂上我給予了學(xué)生十分充足的獨立嘗試練習(xí)時間,但在未給予任何提示的情況下全班僅4人全對,另有4人結(jié)果計算正確,但卻未換算單位,正確率僅為7.4%。所以下次再教時,此題應(yīng)加大指導(dǎo)力度。建議:先在小組內(nèi)討論“求涂油漆的面積也就是求什么?”然后強調(diào)單位換算,并復(fù)習(xí)平方米與平方厘米之間的進(jìn)率(10000),最后再讓學(xué)生分步列式解答。第2問要求“一共需要多少元”結(jié)合生活實際,學(xué)生應(yīng)主動對計算結(jié)果取近似值。

  第四課時教學(xué)反思

  開放的設(shè)問結(jié)碩果

  因為臨時換課,所以今天是本學(xué)期開學(xué)以來第一次在學(xué)生未預(yù)習(xí)的情況下教學(xué)新課。沒有預(yù)習(xí),給學(xué)生的.自主探索以更廣闊的空間。當(dāng)學(xué)生提出可以將圓柱的底面分成許多相等的扇形,把圓柱切開,拼成一個近似的長方體后,我請學(xué)生們觀察并思考“轉(zhuǎn)化后的長方體與圓柱體之間有什么聯(lián)系呢?”

  他們除了發(fā)現(xiàn)教材中所提到的體積不變、底面積不變、高不變外,還有不少新發(fā)現(xiàn)。如“長方體的長是圓柱體底面周長的一半”,“長方體的寬是圓柱體底面半徑”, “圓柱體的側(cè)面積是長方體前后兩個面的面積總和”(魏勉)。當(dāng)學(xué)生的發(fā)現(xiàn)由底面積涉及到側(cè)面積時,我根據(jù)本班學(xué)情適時進(jìn)行了拓展性提問,“將圓柱體轉(zhuǎn)化為長方體,表面積有變化嗎?如果有,有怎樣的變化?”由此將圓柱體與長方體轉(zhuǎn)化的探究由體積的變化引向了新的層面——表面積。

  我將根據(jù)學(xué)情在練習(xí)課中補充相關(guān)練習(xí):把一個高15厘米的圓柱體分割成若干份,再拼成一個近似的長方體,表面積增加了90平方厘米。那么這個圓柱的體積是多少?

  今天的作業(yè)正確率明顯提升,但全班有4名學(xué)生將圓柱體側(cè)面積與體積公式混淆,列式全錯,因此要加強辨析指導(dǎo)。自從讓學(xué)生“創(chuàng)造”圓柱體表面積的另類推導(dǎo)方法及公式以來,孩子們探索并“創(chuàng)造”新公式的熱情不斷高漲。雖然,今天由于種種原因沒能給學(xué)生上課,但他們?nèi)耘f將自己的新發(fā)現(xiàn)用紙條記錄了下來送到我的手中。

  創(chuàng)新(一)圓柱體側(cè)面積:圓柱體的體積=(2πrh) :(πrrh)=2:r。(發(fā)現(xiàn)者:沈洪鑫)

  創(chuàng)新(二)圓柱的體積=圓柱的側(cè)面積÷2×r(發(fā)現(xiàn)者:蘭晟)

  根據(jù)這一發(fā)現(xiàn),能夠有效提高已知半徑和側(cè)面積求體積或已知體積求側(cè)面積的習(xí)題。如:一根圓柱形木頭的側(cè)面積是37.68平方分米,底面半徑是3分米,它的體積是多少平方分米?如果按常規(guī)做法為:首先求圓柱體的高37.68÷(3.14×2×3)=2(分米);然后再求圓柱體的體積3.14×32×2=56.52平方分米),共需要6步。如果根據(jù)上述發(fā)現(xiàn),解答此題就只需要將37.68÷2×3即可求了正確結(jié)果,大大提高速度。

《圓柱的體積》教案15

  教學(xué)內(nèi)容:P19-20頁例5、例6及補充例題,完成“做一做”及練習(xí)三第1~4題。

  教學(xué)目標(biāo):

  1、通過用切割拼合的方法借助長方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運用公式正確地計算圓柱的體積和容積。

  2、初步學(xué)會用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實際問題的能力

  滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識。

  教學(xué)重點:掌握圓柱體積的計算公式。

  教學(xué)難點:圓柱體積的計算公式的推導(dǎo)。

  教學(xué)過程:

  一、復(fù)習(xí)

  1、長方體的體積公式是什么?(長方體的體積=長×寬×高,長方體和正方體體積的統(tǒng)一公式“底面積×高”,即長方體的體積=底面積×高)

  2、拿出一個圓柱形物體,指名學(xué)生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。

  3、復(fù)習(xí)圓面積計算公式的推導(dǎo)過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的`長方形之間的關(guān)系,再利用求長方形面積的計算公式導(dǎo)出求圓面積的計算公式。

  二、新課

  1、圓柱體積計算公式的推導(dǎo)。

 。1)用將圓轉(zhuǎn)化成長方形來求出圓的面積的方法來推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個近似長方體的立體圖形。

【《圓柱的體積》教案】相關(guān)文章:

圓柱的體積教案11-18

《圓柱的體積》教案01-27

《圓柱的體積》教案10-07

圓柱的體積教學(xué)教案10-08

有關(guān)圓柱的體積的教案10-07

《圓柱的體積》教案15篇04-01

《圓柱的體積》數(shù)學(xué)教案08-03

圓柱的體積教案15篇03-29

“圓柱的體積”教案設(shè)計10-07