- 相關(guān)推薦
《函數(shù)的圖象》數(shù)學(xué)教學(xué)方案設(shè)計(精選10篇)
作為一位杰出的教職工,時常要開展教學(xué)設(shè)計的準(zhǔn)備工作,編寫教學(xué)設(shè)計有利于我們科學(xué)、合理地支配課堂時間。教學(xué)設(shè)計應(yīng)該怎么寫才好呢?以下是小編為大家收集的《函數(shù)的圖象》數(shù)學(xué)教學(xué)方案設(shè)計,僅供參考,大家一起來看看吧。
《函數(shù)的圖象》數(shù)學(xué)教學(xué)方案設(shè)計 1
一、教學(xué)目標(biāo)
知識與技能目標(biāo)
1、繼續(xù)鞏固一次函數(shù)的作圖方法;
2、結(jié)合一次函數(shù)的圖像,掌握一次函數(shù)及其圖像的簡單性質(zhì)。
過程與方法目標(biāo)
1、經(jīng)歷對一次函數(shù)性質(zhì)的探索過程,增強(qiáng)學(xué)生數(shù)形結(jié)合的意識,培養(yǎng)學(xué)生識圖能力;
2、經(jīng)歷對一次函數(shù)性質(zhì)的探索過程,培養(yǎng)學(xué)生的觀察力、語言表達(dá)能力。
情感與態(tài)度目標(biāo)
經(jīng)歷一次函數(shù)及性質(zhì)的探索過程,在合作與交流活動中發(fā)展學(xué)生的合作意識和能力。
二、教材分析
本節(jié)通過對一次函數(shù)圖像的研究,對一次函數(shù)的單調(diào)性作了探討;對一次函數(shù)的幾何意義也有涉及。在教學(xué)中要結(jié)合學(xué)生的'認(rèn)識情況,循序漸進(jìn),逐層深入,對教材內(nèi)容可作適當(dāng)增加,但不宜太難。
教學(xué)重點:結(jié)合一次函數(shù)的圖像,研究一次函數(shù)的簡單性質(zhì)。
教學(xué)難點:一次函數(shù)性質(zhì)的應(yīng)用。
三、學(xué)情分析
學(xué)生已經(jīng)對一次函數(shù)的圖像有了一定的認(rèn)識,在此基礎(chǔ)上,結(jié)合一次函數(shù)的圖像,通過問題的設(shè)計,引導(dǎo)學(xué)生探討一次函數(shù)的簡單性質(zhì),學(xué)生是較容易掌握的。
四、教學(xué)過程
(一)做一做
在同一直角坐標(biāo)系內(nèi)分別作出一次函數(shù)y=2x+6,y=2x1,y=x+6,y=5x的圖象。
(二)議一議
上述四個函數(shù)中,隨著x值的增大,y的值分別如何變化?
學(xué)生:有的在增大,有的在減小。
師:哪些一次函數(shù)隨x的增大y在增大;哪些一次函數(shù)隨x的增大y在減小,是什么在影響這個變化?
學(xué)生討論:y=2x+6和y=5x這兩個一次函數(shù)在增大;y=2x1和y=x+6在減。挥绊戇@個變化的是x前面的系數(shù)k的符號:當(dāng)k為正數(shù)時,y隨x的增大而增大;當(dāng)k為負(fù)數(shù)時,y隨x的增大而減小。
師:當(dāng)k>0時,一次函數(shù)的圖象經(jīng)過哪些象限?
當(dāng)k<0時,一次函數(shù)的圖象經(jīng)過哪些象限?
《函數(shù)的圖象》數(shù)學(xué)教學(xué)方案設(shè)計 2
一、教學(xué)目標(biāo)
。ㄒ唬┲R目標(biāo):
1、了解k值對兩個一次函數(shù)的圖象位置關(guān)系的影響。
2、理解當(dāng)k>0時,k值對直線傾斜程度的影響。
3、結(jié)合圖象,探究并掌握一次函數(shù)的性質(zhì)。
4、能對一次函數(shù)的性質(zhì)進(jìn)行簡單的應(yīng)用。
。ǘ┠芰δ繕(biāo):
1、經(jīng)歷由特殊到一般的研究過程,培養(yǎng)學(xué)生的觀察分析,自主探索,合作交流的能力。
2、結(jié)合圖象探究性質(zhì),培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力。
(三)情感目標(biāo):
體驗數(shù)學(xué)活動,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
二、數(shù)學(xué)重難點
重點:掌握一次函數(shù)圖象的性質(zhì)及其一次函數(shù)性質(zhì)的簡單應(yīng)用。難點:由一次函數(shù)的圖象探究一次函數(shù)的性質(zhì)。
三、數(shù)學(xué)過程
。ㄒ唬(chuàng)設(shè)情境,回顧復(fù)習(xí)
1、播放動畫視頻《龜兔賽跑》的片段,利用兔子和烏龜?shù)穆烦蘳與時間t的函數(shù)圖象(如下圖)引出對上一節(jié)知識的回顧,進(jìn)行復(fù)習(xí)。
2、憶一憶
⑴、一次函數(shù)的圖象有什么特點?做一次函數(shù)的圖象一般需要描出幾個點?
、啤⒄壤瘮(shù)的圖象有什么特點?正比例函數(shù)圖象經(jīng)過的象限和增減性與k的關(guān)系?
(二)、情景再現(xiàn),引入新課
1、設(shè)置故事情節(jié):小兔子輸?shù)袅吮荣,非常不服氣,于是就邀請烏龜進(jìn)行第二次比賽,為了證明自己的實力,兔子決定讓烏龜先跑200米(如下圖)。
2、進(jìn)入本節(jié)課主題:(到底誰會贏?讓學(xué)生帶著問題進(jìn)入本節(jié)課的學(xué)習(xí))
(三)提出問題,歸納總結(jié),層層闖關(guān)1、第一關(guān):探討直線y=kx+b所經(jīng)過的象限
(1)觀察在同一個平面直角坐標(biāo)系的函數(shù)y=x、y=x+6、y=x—3、y=3x+3的圖象。
問題1:觀察四條直線,他們之間的位置關(guān)系有幾種?
問題2:觀察平行直線與相交直線,它們的系數(shù)k和b有什么特點?
問題3:直線y=x經(jīng)過上下平移可以得到直線y=x+6和直線y=x—3嗎?b的符號能決定平移的方向嗎?
。2)合作交流、得到猜想:
規(guī)律:①當(dāng)k值相同,b值不同時,兩直線平行。②當(dāng)k值不同時,兩直線相交。
。3)歸納驗證,得到結(jié)論:
規(guī)律:①當(dāng)k值相同,b值不同時,兩直線平行。②當(dāng)k值不同時,兩直線相交。
。4)問題延伸:
在觀察圖象的基礎(chǔ)上,讓學(xué)生發(fā)現(xiàn)當(dāng)b≠0時,一次函數(shù)y=kx+b的圖象必過三個象限,然后提出問題。
問題4:正比例函數(shù)的圖象經(jīng)過上下平移可以得到一次函數(shù)的圖象,從這個規(guī)律,你能猜想出直線y=kx+b所經(jīng)過象限與k、b符號的關(guān)系嗎?
。5)合作交流,得到結(jié)論:
在一次函數(shù)y=kx+b中,當(dāng)k>0,b>0時,直線經(jīng)過第一、二、三象限當(dāng)k>0,b<0時,直線經(jīng)過第一、三、四象限當(dāng)k<0,b>0時,直線經(jīng)過第一、二、四象限當(dāng)k<0,b<0時,直線經(jīng)過第二、三、四象限第二關(guān):探討直線y=kx+b的增減性
。1)回顧知識:直線y=x的增減性如何?(2)提出問題:
問題1:觀察圖象,直線y=x+6,y=x—3,y=3x+3的增減性與直線y=x相同嗎?問題2:從問題1中,你得到啟發(fā)了嗎?
k的符號對一次函數(shù)y=kx+b的增減性有什么影響?(3)合作交流,得出結(jié)論:
規(guī)律:k>0時,y隨x的增大而增大,k<0時y隨x的增大而減小第三關(guān):探討當(dāng)k>0時,k的大小對直線y=kx+b的傾斜程度的影響。
。1)直觀演示:(用幾何畫板演示當(dāng)k值增大時,觀察直線y=kx+b與x軸正方向的夾角的變化),觀察當(dāng)k值越來越大時,在x的增加量為1個單位長度時,函數(shù)值增加量的變化。
。2)合作交流,得到結(jié)論:當(dāng)k>0時,k值越大,直線y=kx+b與x軸正方向所夾的銳角越大,直線的'傾斜程度越大,隨著x的增加,函數(shù)值增長的速度越快。
第四關(guān):學(xué)以致用,鞏固新知
例2:當(dāng)x從0開始逐漸增大時,y=2x+6和y=5x哪一個直線到達(dá)20,這說明什么?(觀察大屏幕上作出的直線y=2x+6和y=5x,當(dāng)x從0開始逐漸增大時,y=5x先到達(dá)20,這說明k值越大,y的變化量越大)
。ㄋ模┬〗M競答
(五)首尾呼應(yīng),感悟收獲
1、呼應(yīng)開頭,比比到底誰會贏?如圖:
2、知識收獲:
3、布置作業(yè):
。1)習(xí)題6.41.2
。2)充分發(fā)揮你的想象,自編一則新的“龜兔賽跑”的寓言故事。
要求:
1、用生動的語言描述故事情景。
2、畫出相應(yīng)的函數(shù)圖象。
六、板書設(shè)計:問題與情境師生行為設(shè)計意圖[活動1]1。已知函數(shù)。
。1)、當(dāng)m取何值時,該函數(shù)是一次函數(shù)。
。2)、當(dāng)m取何值時,該函數(shù)是正比例函數(shù)。
2、正比例函數(shù)和一次函數(shù)有何區(qū)別與聯(lián)系?
3、在同一坐標(biāo)系中描出以下6個函數(shù)的圖像①y=2x②y=2x—1③y=—2x④y=—2x+1⑤⑥
(上節(jié)課的課外練習(xí))觀察你所畫的圖像的形狀
能否發(fā)現(xiàn)一些規(guī)律(或共同點)?
1、教師出示問題,引導(dǎo)學(xué)生動手操作,動腦思考,總結(jié)規(guī)律。
2、學(xué)生猜想出結(jié)論:一次函數(shù)的圖像是一條直線。
3、教師為了進(jìn)一步驗證學(xué)生猜想的結(jié)論的正確性,再出示一組課前畫好的一次函數(shù)的圖像
4、本次活動中,教師應(yīng)重點關(guān)注:
⑴學(xué)生能否準(zhǔn)確理解正比例函數(shù)和一次函數(shù)有何區(qū)別與聯(lián)系。
、茖W(xué)生能否由問題3中六個函數(shù)的圖像歸納出規(guī)律:一次函數(shù)的圖像是一條直線。(適時點播)
問題1:復(fù)習(xí)正比例函數(shù)和一次函數(shù)的定義。
問題2:理解正比例函數(shù)是一次函數(shù)的特殊形式。為本課由正比例函數(shù)的性質(zhì)類比、遷移到一次函數(shù)的性質(zhì)作鋪墊。
問題3:通過對圖形的觀察、總結(jié)、歸納、探究,猜想出一次函數(shù)的圖像是一條直線。
1、在探究規(guī)律的過程中,培養(yǎng)學(xué)生的觀察、總結(jié)、歸納、探究,猜想能力。
2、觀察教師出示的一組一次函數(shù)的圖象,進(jìn)一步驗證猜想結(jié)論的正確性,體驗成功。
3、引出課題:一次函數(shù)的圖像和性質(zhì)問題與情境師生行為設(shè)計意圖
[活動2]問題:
1、正比例函數(shù)的圖像是一條直線,除了描點法外,你還有更簡便的方法畫出它的圖像嗎?
2、用兩點法分別在同一坐標(biāo)系中畫出下列函數(shù)的圖像①②
問題:觀察這兩組圖像:
。1)指出它們分別有什么共同點,它們所在的象限,以及上升與下降的趨勢。
。2)分別在直線和上依次從左向右各取三個點A(x1,y1),B(x2,y2),C(x3,y3)。試比較y1、y2y3的大小。
1、教師引導(dǎo)學(xué)生分析:
(1)一條直線最少可以有幾個點確定?
。2)可以取直線上的哪兩個最簡單、易取的點?
(3)學(xué)生總結(jié)出選。0,0),(1,k)兩點。(其他的點也可以,但這兩點最簡單)
2、教師巡視,適時點撥,演示
幾何畫板課件,正比例函數(shù)的圖像:k任取不同的數(shù)值,觀察圖像的位置,給出圖像上任意一點測量出此點的坐標(biāo),拖動此點變換它的位置。觀察此點的橫縱坐標(biāo)的變化情況。引導(dǎo)學(xué)生探究、討論、歸納出正比例函數(shù)的性質(zhì):
。1)k>0時,圖像在第一、三象限,y隨x的增大而增大。(2)k0時,y隨x的增大而增大。
(2)k問題1、問題2、問題3的解決,是鞏固正比例函數(shù)的性質(zhì),為歸納一次函數(shù)的性質(zhì)做準(zhǔn)備。問題4,兩點法畫一次函數(shù)的圖像,“數(shù)”與“形”轉(zhuǎn)化,培養(yǎng)學(xué)生的畫圖能力。對圖像的觀察、歸納,“形”與“數(shù)”轉(zhuǎn)化,培養(yǎng)他們的視圖能力,幾何畫板課件的演示,幫助學(xué)生從感性認(rèn)識上升到理性認(rèn)識,形象直觀的遷移到“形”與“數(shù)”轉(zhuǎn)化。[活動4]問題A組:
1、已知函數(shù)y=kx的圖像過(-1,3),那么k=______,圖像過_________象限
2、函數(shù)y=-kx-2的圖像通過點(0,__)如果y隨x增大而減小,則k___03、在函數(shù)y=kx+b中,k<0,b>0,那么這個函數(shù)圖像不經(jīng)過第___象限
4、直線與平行,與y軸的交點在x軸的上方,且,則此函數(shù)的解析式為______。
B組:
1、直線,當(dāng)k>0, b0,y0,y0,y(1)積極評價不同層次的學(xué)生對本節(jié)內(nèi)容的不同認(rèn)識。
(2)理清本節(jié)所學(xué)知識,總結(jié)情感收獲。數(shù)學(xué)知識與實際運用的密切關(guān)系。
1、幫助學(xué)生理清本節(jié)所學(xué)知識?偨Y(jié)情感收獲。
2、鞏固所學(xué)知識,選做題,給學(xué)生發(fā)展的空間。教學(xué)設(shè)計說明
本節(jié)課的設(shè)計力求體現(xiàn)使學(xué)生“學(xué)會學(xué)習(xí),為學(xué)生終身學(xué)習(xí)做準(zhǔn)備”的理念,努力實現(xiàn)學(xué)生的主體地位,使數(shù)學(xué)教學(xué)成為一種過程教學(xué),并注意教師角色的轉(zhuǎn)變,為學(xué)生創(chuàng)造一種寬松和諧、適合發(fā)展的學(xué)習(xí)環(huán)境,創(chuàng)設(shè)一種有利于思考、討論、探索的學(xué)習(xí)氛圍,根據(jù)學(xué)生的實際水平,選擇恰當(dāng)?shù)慕虒W(xué)起點和教學(xué)方法。由此我采用“問題猜想探究應(yīng)用”的學(xué)科教學(xué)模式,把主動權(quán)充分的還給學(xué)生,讓學(xué)生在自己已有經(jīng)驗的基礎(chǔ)上提出問題,明確學(xué)習(xí)任務(wù),教師引導(dǎo)學(xué)生觀察、發(fā)現(xiàn)、猜想、操作、動手實踐、自主探索、合作交流,尋找解決的辦法并最終探求到真正的結(jié)果,從而體會到數(shù)學(xué)的奧妙與成功的快樂。
整堂課以問題思維為主線,充分利用幾何畫板及計算機(jī)輔助教學(xué),特別是幾何畫板,巧妙地把數(shù)學(xué)實驗引進(jìn)了數(shù)學(xué)課堂,讓學(xué)生充分參與數(shù)學(xué)學(xué)習(xí),獲得廣泛的數(shù)學(xué)經(jīng)驗,整堂課融基礎(chǔ)性、靈活性、實踐性、開放性于一體。這樣既注重知識的發(fā)生、發(fā)展、形成的過程,解題思路的探索過程,解題方法和規(guī)律的概括過程,又使學(xué)習(xí)者積極主動地將知識融入已構(gòu)建的結(jié)構(gòu),而不是被動的接受并積累知識,從而“構(gòu)建自己的知識體系”。并通過探索過程,不斷豐富學(xué)生解決問題的策略,提高解決問題的能力,滲透數(shù)學(xué)的思想方法,發(fā)展數(shù)學(xué)思維。
《函數(shù)的圖象》數(shù)學(xué)教學(xué)方案設(shè)計 3
教學(xué)目標(biāo):
1.經(jīng)歷探索二次函數(shù)y=ax2的圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗。
2.能夠利用描點法作出函數(shù)y=ax2的圖象,并能根據(jù)圖象認(rèn)識和理解二次函數(shù)y=ax2的性質(zhì),初步建立二次函數(shù)表達(dá)式與圖象之間的聯(lián)系。
3.能根據(jù)二次函數(shù)y=ax2的圖象,探索二次函數(shù)的性質(zhì)(開口方向、對稱軸、頂點坐標(biāo))。
教學(xué)重點:
二次函數(shù)y=ax2的圖象的作法和性質(zhì)
教學(xué)難點:
建立二次函數(shù)表達(dá)式與圖象之間的聯(lián)系
教學(xué)方法:
自主探索,數(shù)形結(jié)合
教學(xué)建議:
利用具體的二次函數(shù)圖象討論二次函數(shù)y=ax2的性質(zhì)時,應(yīng)盡可能多地運用小組活動的形式,通過學(xué)生之間的合作與交流,進(jìn)行圖象和圖象之間的比較,表達(dá)式和表達(dá)式之間的比較,建立圖象和表達(dá)式之間的聯(lián)系,以達(dá)到學(xué)生對二次函數(shù)性質(zhì)的真正理解。
教學(xué)過程:
一 、認(rèn)知準(zhǔn)備:
1.正比例函數(shù)、一次函數(shù)、反比例函數(shù)的圖象分別是什么?
2.畫函數(shù)圖象的方法和步驟是什么?(學(xué)生口答)
你會作二次函數(shù)y=ax2的圖象嗎?你想直觀地了解它的性質(zhì)嗎?本節(jié)課我們一起探索。
二 、 新授:
(一)動手實踐:作二次函數(shù) y=x2和y=-x2的圖象
(同桌二人,南邊作二次函數(shù) y=x2的圖象,北邊作二次函數(shù)y=-x2的圖象,兩名學(xué)生黑板完成)
(二)對照黑板圖象 議一議:(先由學(xué)生獨立思考,再小組交流)
1.你能描述該圖象的形狀嗎?
2.該圖象與x軸有公共點嗎?如果有公共點坐標(biāo)是什么?
3. 當(dāng)x0時,隨著x的增大,y如何變化?當(dāng)x0時呢?
4.當(dāng)x取什么值時,y值最小?最小值是什么?你是如何知道的?
5.該圖象是軸對稱圖形嗎?如果是,它的對稱軸是什么?請你找出幾對對稱點。
(三) 學(xué)生交流:
1.交流上面的五個問題(由問題1引出拋物線的概念,由問題2引出拋物線的頂點)
2.二次函數(shù) y=x2 和y=-x2的圖象有哪些相同點和不同點?
3.教師出示同一直角坐標(biāo)系中的兩個函數(shù)y=x2 和y=-x2 圖象,根據(jù)圖象回答:
(1)二次函數(shù) y=x2和y=-x2 的圖象關(guān)于哪條直線對稱?
(2)兩個圖象關(guān)于哪個點對稱?
(3)由 y=x2 的圖象如何得到 y=-x2 的圖象?
(四) 動手做一做:
1.作出函數(shù)y=2 x2 和 y= -2 x2的圖象
(同桌二人,南邊作二次函數(shù) y= -2 x2的圖象,北邊作二次函數(shù)y=2 x2的圖象,兩名學(xué)生黑板完成)
2.對照黑板圖象,數(shù)形結(jié)合,研討性質(zhì):
(1)你能說出二次函數(shù)y=2 x2具有哪些性質(zhì)嗎?
(2)你能說出二次函數(shù) y= -2 x2具有哪些性質(zhì)嗎?
(3)你能發(fā)現(xiàn)二次函數(shù)y=a x2的圖象有什么性質(zhì)嗎?
(學(xué)生分小組活動,交流各自的`發(fā)現(xiàn))
3.師生歸納總結(jié)二次函數(shù)y=a x2的圖象及性質(zhì):
(1)二次函數(shù)y=a x2的圖象是一條拋物線
(2)性質(zhì)
a、開口方向:a0,拋物線開口向上,a〈 0,拋物線開口向下
b、頂點坐標(biāo)是(0,0)
c、對稱軸是y軸
d、最值 :a0,當(dāng)x=0時,y的最小值=0,a〈0,當(dāng)x=0時,y的最大值=0
e、增減性:a0時,在對稱軸的左側(cè)(X0),y隨x的增大而減小,在對稱軸的右側(cè)(x0),y隨x的增大而增大,a〈0時,在對稱軸的左側(cè)(X0),y隨x的增大而增大,在對稱軸的右側(cè)(x0),y隨x的增大而減小。
4.應(yīng)用:
(1)說出二次函數(shù)y=1/3 x2 和 y= -5 x2 有哪些性質(zhì)
(2)說出二次函數(shù)y=4 x2 和 y= -1/4 x2有哪些相同點和不同點?
三、小結(jié):
通過本節(jié)課學(xué)習(xí),你有哪些收獲?(學(xué)生小結(jié))
1.會畫二次函數(shù)y=a x2的圖象,知道它的圖象是一條拋物線
2.知道二次函數(shù)y=a x2的性質(zhì):
a、開口方向:a0,拋物線開口向上,a〈0,拋物線開口向下
b、頂點坐標(biāo)是(0,0)
c、對稱軸是y軸
d、最值 :a0,當(dāng)x=0時,y的最小值=0,a〈0,當(dāng)x=0時,y的最大值=0
e、增減性:a0時,在對稱軸的左側(cè)(X0=,y隨x的增大而減小,在對稱軸的右側(cè)(x0),y隨x的增大而增大,a〈0時,在對稱軸的左側(cè)(X0),y隨x的增大而增大,在對稱軸的右側(cè)(x0),y隨x的增大而減小。
《函數(shù)的圖象》數(shù)學(xué)教學(xué)方案設(shè)計 4
一、教學(xué)設(shè)計思路
1. 本節(jié) 課講述內(nèi)容為北師大版教材九年級下冊第五章《反比例函數(shù)》 的第二節(jié),也這一章的重點。本節(jié)課是在理解反比例 函數(shù)的意義和概念的基礎(chǔ)上,進(jìn)一步熟悉其圖象和性質(zhì)的過程。
2. 對教材的分析
。1) 教學(xué)目標(biāo):進(jìn) 一步熟悉作函數(shù)圖象的主要步驟,會作反比例函數(shù)的圖象;體會函數(shù)三種方式的相互轉(zhuǎn)換,對 函數(shù)進(jìn)行認(rèn)識上的整和;逐步提高從函數(shù)圖象中獲取知識的能力,探索并掌握反比例函數(shù)的主要性質(zhì)。
(2) 重點:會作反比例函數(shù)的圖象;探索并掌握反比例函數(shù)的主要性質(zhì)。
。3) 難點:探索并掌握反比例函數(shù)的主要性質(zhì)。
二、教學(xué)過程
(一)作圖象,試比較
1、提問:
。1)=4/x 是什么函數(shù)?你會作反比例函數(shù)的圖象嗎?
。2)作圖的步驟是 怎樣的
。3)填寫電腦上的`表格,開始在坐標(biāo)紙上描點連線。
2、按照上述方法作 =—4/x 的圖象
3、 對照你所作的兩個函數(shù)圖象,找一下它們的相同點和不同點。
。ǘ┘(xì)觀察,找規(guī)律
1、讓學(xué)生觀察函 數(shù) =/x 的圖象 ,按下動畫按鈕,在運動中觀察值的變化與函數(shù)圖象變化之間的關(guān)系,并與同學(xué)充分討論有何規(guī)律。
2、演示反比例函數(shù)中心 對稱的性質(zhì)以及軸對稱性質(zhì),顯示反比例函數(shù)的兩條對稱軸。
3、讓學(xué)生觀察函數(shù) =/x 的圖象,觀察過反比例函數(shù)上任意一 點作x軸和軸的垂線,觀察其圍成矩形的面積變化情況。
。1) 拖動,使變化,觀察不斷變化過程中,矩形面積的變化情況,討論得出 結(jié)論。
(2) 拖動函數(shù)上的點,觀察矩形面積的變化情況,討論得出結(jié)論。
。ㄈ┯靡(guī)律,練一練
1、給出兩個反比例函數(shù)的圖象,判斷哪一個是 =2/x 和 =—2/x 的圖象。
2、判斷一位同學(xué)畫的反比例函數(shù)的圖象是否正確。
3、下列函數(shù)中,其圖象位于第一、三象限的有哪幾個?在其圖象所在象限內(nèi),的值隨x的增大而增大的有哪幾個?
。ㄋ模┫胍幌耄餍〗Y(jié)
。ㄎ澹┳鳂I(yè):課本137頁第1題、141頁第2題
《函數(shù)的圖象》數(shù)學(xué)教學(xué)方案設(shè)計 5
一、教學(xué)目的
1、使學(xué)生進(jìn)一步理解自變量的取值范圍和函數(shù)值的意義。
2、使學(xué)生會用描點法畫出簡單函數(shù)的圖象。
二、教學(xué)重點、難點
重點:
1、理解與認(rèn)識函數(shù)圖象的意義。
2、培養(yǎng)學(xué)生的看圖、識圖能力。
難點:在畫圖的三個步驟的列表中,如何恰當(dāng)?shù)剡x取自變量與函數(shù)的對應(yīng)值問題。
三、教學(xué)過程
復(fù)習(xí)提問
1、函數(shù)有哪三種表示法?(答:解析法、列表法、圖象法。)
2、結(jié)合函數(shù)y=x的圖象,說明什么是函數(shù)的圖象?
3、說出下列各點所在象限或坐標(biāo)軸:
新課
1、畫函數(shù)圖象的方法是描點法。其步驟:
(1)列表。要注意適當(dāng)選取自變量與函數(shù)的對應(yīng)值。什么叫“適當(dāng)”?這就要求能選取表現(xiàn)函數(shù)圖象特征的幾個關(guān)鍵點。比如畫函數(shù)y=3x的圖象,其關(guān)鍵點是原點(0,0),只要再選取另一個點如M(3,9)就可以了。
一般地,我們把自變量與函數(shù)的對應(yīng)值分別作為點的橫坐標(biāo)和縱坐標(biāo),這就要把自變量與函數(shù)的對應(yīng)值列出表來。
(2)描點。我們把表中給出的有序?qū)崝?shù)對,看作點的坐標(biāo),在直角坐標(biāo)系中描出相應(yīng)的點。
。3)用光滑曲線連線。根據(jù)函數(shù)解析式比如y=3x,我們把所描的兩個點(0,0),(3,9)連成直線。
一般地,根據(jù)函數(shù)解析式,我們列表、描點是有限的幾個,只需在平面直角坐標(biāo)系中,把這有限的幾個點連成表示函數(shù)的曲線(或直線)。
2、講解畫函數(shù)圖象的三個步驟和例。畫出函數(shù)y=x+0.5的圖象。
小結(jié)
本節(jié)課的重點是讓學(xué)生根據(jù)函數(shù)解析式畫函數(shù)圖象的三個步驟,自己動手畫圖。
練習(xí)
、龠x用課本練習(xí)
(前一節(jié)已作:列表、描點,本節(jié)要求連線)
、谘a(bǔ)充題:畫出函數(shù)y=5x-2的圖象。
作業(yè):選用課本習(xí)題。
四、教學(xué)注意問題
1、注意滲透數(shù)形結(jié)合思想。通過研究函數(shù)的'圖象,對圖象所表示的一個變量隨另一個變量的變化而變化就更有形象而直觀的認(rèn)識。把函數(shù)的解析式、列表、圖象三者結(jié)合起來,更有利于認(rèn)識函數(shù)的本質(zhì)特征。
2、注意充分調(diào)動學(xué)生自己動手畫圖的積極性。
3、認(rèn)識到由于計算器和計算機(jī)的普及化,代替了手工繪圖功能。故在教學(xué)中要傾向培養(yǎng)學(xué)生看圖、識圖的能力。
《函數(shù)的圖象》數(shù)學(xué)教學(xué)方案設(shè)計 6
一、背景分析
1、對教材的分析
本節(jié)課講述內(nèi)容為北師大版教材九年級下冊第五章《反比例函數(shù)》的第二節(jié),也這一章的重點。本節(jié)課是在理解反比例函數(shù)的意義和概念的基礎(chǔ)上,進(jìn)一步熟悉其圖象和性質(zhì)的過程。
本節(jié)課前一課時是在具體情境中領(lǐng)會反比例函數(shù)的意義和概念。函數(shù)的性質(zhì)蘊涵于概念之中,對反比例函數(shù)性質(zhì)的探索是對其內(nèi)在規(guī)定性的的認(rèn)識,也是對函數(shù)的概念的深化。同時,本節(jié)課也是下一節(jié)課《反比例函數(shù)的應(yīng)用》的基礎(chǔ),有了本節(jié)課的知識儲備,便于學(xué)生利用函數(shù)的觀點來處理問題和解釋問題。
傳統(tǒng)教材在內(nèi)容和編寫意圖的比較:傳統(tǒng)教材里反比例函數(shù)的內(nèi)容僅有一節(jié),新教材里反比例函數(shù)的內(nèi)容增加至一章。本節(jié)課中的作函數(shù)圖象的要求在新舊教材中并不一樣,舊教材對畫圖只是一帶而過,而新教材中讓學(xué)生反復(fù)作反比例函數(shù)的圖象,為下一步性質(zhì)的探索打下良好的基礎(chǔ)。因為在學(xué)生進(jìn)行函數(shù)的列表、描點作圖是活動中,就已經(jīng)開始了對反比例函數(shù)性質(zhì)的探索,而且通過對函數(shù)的三種表示方式的整和,逐步形成對函數(shù)概念的整體性認(rèn)識。在舊教材中對反比例函數(shù)性質(zhì)只是簡單觀察以后,由老師講解得到,但是在新教材中注重從操作、觀察、概括和交流這些數(shù)學(xué)活動中得到性質(zhì)結(jié)論,從而逐步提高從函數(shù)圖象中獲取信息的能力。這也充分體現(xiàn)了重視獲取知識過程體驗的新課標(biāo)的精神。
。1)教學(xué)目標(biāo):進(jìn)一步熟悉作函數(shù)圖象的主要步驟,會作反比例函數(shù)的圖象;體會函數(shù)三種方式的相互轉(zhuǎn)換,對函數(shù)進(jìn)行認(rèn)識上的整和;逐步提高從函數(shù)圖象中獲取知識的能力,探索并掌握反比例函數(shù)的主要性質(zhì)。
。2)重點:會作反比例函數(shù)的圖象;探索并掌握反比例函數(shù)的主要性質(zhì)。
(3)難點:探索并掌握反比例函數(shù)的主要性質(zhì)。
2、對學(xué)情的分析
九年級學(xué)生在前面學(xué)習(xí)了一次函數(shù)之后,對函數(shù)有了一定的認(rèn)識,雖然他們在小學(xué)已經(jīng)接觸了反比例,但都處于淺顯的、膚淺的知識表面,這對于他們理解反比例函數(shù)的圖象與性質(zhì)沒有多大的幫助,但由于本節(jié)課采用z+z智能教育平臺進(jìn)行教學(xué),比較形象,便于學(xué)生接受。
二、教學(xué)過程
一、憶一憶
師:同學(xué)們還記得我們在學(xué)習(xí)一次函數(shù)時,是怎么作出一次函數(shù)圖象的嗎?一次函數(shù)的圖象是什么圖形?
生:作一次函數(shù)的圖象要采用以下幾個步驟:
。1)列表
。2)描點
(3)連線。
生:一次函數(shù)的圖象是一條直線。
師:大家說的很好,看來大家對過去的知識掌握的很牢固,那么同學(xué)們想一下,y=4/x是什么函數(shù)?
生:反比例函數(shù)。
師:你們能作出它的圖象嗎?
生:可以。
點評:復(fù)習(xí)舊知識,讓學(xué)生感受到新舊知識的聯(lián)系,并為后面的作反比例函數(shù)的圖象做好準(zhǔn)備。
二、作圖象,試比較
師:請?zhí)顚戨娔X上的表格,并開始在坐標(biāo)紙上描點,連線。
師:再按照上述方法作y=-4/x的圖象。
。▽W(xué)生動手操作)
師:下面大家分小組討論:對照你們所作出的兩個函數(shù)圖象,找出它們的相同點與不同點。
(學(xué)生討論交流,教師參與)
師:討論結(jié)束,下面哪個小組的同學(xué)說說你們的看法?
生1:它們的圖象都是由兩支曲線組成的。
生2:y=4/x的圖象的兩條曲線分布在一、三象限內(nèi),而y=-4/x的圖象的兩支曲線分布在二、四象限內(nèi)。
點評:這里讓學(xué)生自己上臺操作,既培養(yǎng)了學(xué)生的動手能力,又可以激發(fā)學(xué)生學(xué)好數(shù)學(xué)的興趣。
三、細(xì)觀察,找規(guī)律
師:大家都說得很好,下面我們一起觀察反比例函數(shù)y=k/x的圖象,當(dāng)k的發(fā)值生變化時,函數(shù)的圖象發(fā)生了怎樣的變化,并分小組討論有什么規(guī)律。
。ㄕ故緢D象,讓學(xué)生觀察y=k/x的圖象,按下動畫按鈕,在運動中觀察值的變化與函數(shù)的圖象變化之間的關(guān)系,并與同學(xué)們充分討論)
師:請同學(xué)們談一談剛才討論的結(jié)果。
生:我發(fā)現(xiàn)函數(shù)圖象的變化與k的值有關(guān):當(dāng)k>0時,在每一象限內(nèi),y隨x的增大而減小,當(dāng)k<0時,在每一象限內(nèi),y隨x的增大而增大。
師:看來大家都經(jīng)過了認(rèn)真的思考和討論,對規(guī)律總結(jié)的也比較完整,下面我們一起把剛才兩個環(huán)節(jié)的知識點一起總結(jié)一下。
。1)反比例函數(shù)y=k/x的圖象是由兩支曲線所組成的。
。2)當(dāng)k>0時,兩支曲線分別在一、三象限;當(dāng)k<0時,兩支曲線分別在二、四象限。
(3)當(dāng)k>0時,在每一象限內(nèi),y隨x的增大而減小,當(dāng)k<0時,在每一象限內(nèi),y隨x的增大而增大。
師:如果我們將反比例函數(shù)的圖象繞原點旋轉(zhuǎn)180后,你會發(fā)現(xiàn)什么現(xiàn)象?這說明了什么問題?
。ㄓ蓪W(xué)生在電腦上進(jìn)行操作)
生:我發(fā)現(xiàn)旋轉(zhuǎn)后的圖象與原圖象完全重合了,這說明反比例函數(shù)的圖象是一個中心對稱圖形。
師:大家做得很好。那么,如果我們在圖象上任取a、b兩點,經(jīng)過這兩點分別作軸、軸的垂線,與坐標(biāo)軸圍成的矩形面積分別為s1、s2,觀察兩個矩形面積的變化情況,并找出其中的.變化規(guī)律。
題目:
。1)拖動k,使k變化,觀察k不斷變化過程中,矩形面積的變化情況,討論得出結(jié)論。
(2)拖動函數(shù)上的點,觀察矩形面積的變化情況,討論得出結(jié)論。
生:我們發(fā)現(xiàn),在同一個反比例函數(shù)中,不管k值怎么變化,矩形的面積始終不變。
師:大家的觀察很仔細(xì),總結(jié)得也很正確。
點評:在這個環(huán)節(jié)中,既讓學(xué)生動手操作,又讓他們分組交流,這樣既培養(yǎng)了他們的動手能力,又增強(qiáng)了他們的團(tuán)結(jié)合作的意識。結(jié)論主要有學(xué)生來發(fā)現(xiàn),體現(xiàn)了新課程理論的精神。
四、用規(guī)律,練一練
1、課本137頁隨堂練習(xí)1
生:第一幅圖是y=-2/x的圖象,因為在這里的k<0,雙曲線應(yīng)在第二、四象限。
2、下列函數(shù)中,其圖象唯一、三象限的有哪幾個?在其圖象所在象限內(nèi),的值隨的增大而增大的有哪幾個?
。1)y=1/(2x)
。2)y=0.3/x
(3)y=10/x
。4)y=-7/(100x)
生:其中(1)(2)(3)的圖象在一、三象限;(4)的圖象在每一象限內(nèi),y隨x的增大而增大。
五、想一想,談收獲
師:通過今天的學(xué)習(xí),你有什么收獲?
生甲:我今天知道了怎樣畫反比例函數(shù)的圖象。
生乙:我今天知道了反比例函數(shù)的圖象是由兩支曲線所組成的。
生丙:我還懂得了:當(dāng)k>0時,圖象分布在一、三象限,在每一個象限內(nèi),y隨x的增大而減。划(dāng)k<0時,圖象分布在二、四象限,在每一個象限內(nèi),y隨x的增大而增大
生。何疫能用反比例函數(shù)的相關(guān)性質(zhì)解題。
師:看來大家今天學(xué)到了不少知識,只要大家能保持這種對數(shù)學(xué)的熱情和勇于挑戰(zhàn)的精神,在數(shù)學(xué)上一定會有所收獲的。
總評:本節(jié)課很好的反映了新課程的一些理念,首先,就是將數(shù)學(xué)教學(xué)與多媒體教學(xué)進(jìn)行了很好的整合,尤其是采用了z+z智能教育平臺進(jìn)行教學(xué),在本節(jié)課從進(jìn)入課堂到結(jié)束,始終有多媒體教學(xué)的參與,如在講解反比例函數(shù)的性質(zhì)時運用多媒體展示可以給學(xué)生以直觀的感受,并給學(xué)生留下深刻的印象,教師也能熟練地操作電腦,可以看出教師扎實的基本功。其次,在本節(jié)課的教學(xué)中,教師將學(xué)習(xí)的主動權(quán)交給學(xué)生,課堂始終在學(xué)生自主探索、合作交流的氣氛中進(jìn)行,如在得出反比例函數(shù)的性質(zhì)時,就在小組內(nèi)進(jìn)行了廣泛交流,由學(xué)生自己去探索,去發(fā)現(xiàn)新知識,這樣可以激發(fā)學(xué)生求知的欲望,達(dá)到事半功倍的目的。同時教師也主動的參與進(jìn)去,把自己也當(dāng)成了教室里的一員,真正體現(xiàn)了新課程的理念。
教學(xué)反思:
本節(jié)課由于在課前進(jìn)行了大量的準(zhǔn)備工作,包括對教材的鉆研、教學(xué)內(nèi)容的設(shè)計、多媒體課件的制作、學(xué)生學(xué)情的了解,因此在教學(xué)中比較順利,對重難點內(nèi)容也有效的進(jìn)行了突破,尤其是電腦的引入,極大的調(diào)動了學(xué)生的學(xué)習(xí)積極性。學(xué)生由于成了課堂的主人,所以在課堂上保持了高漲的熱情,因此這堂課的效果也較好。
《函數(shù)的圖象》數(shù)學(xué)教學(xué)方案設(shè)計 7
<title> 從不同方向看</title>
一、教學(xué)目標(biāo)
知識與技能目標(biāo)
1.初步了解作函數(shù)圖象的一般步驟;
2.能熟練作出一次函數(shù)的圖象,掌握一次函數(shù)及其圖象的簡單性質(zhì);
3.初步了解函數(shù)表達(dá)式與圖象之間的關(guān)系。
過程與方法目標(biāo)
經(jīng)歷作圖過程中由一般到特殊方法的轉(zhuǎn)變過程,讓學(xué)生體會研究問題的基本方法。
情感與態(tài)度目標(biāo)
1.在作圖的過程中,體會數(shù)學(xué)的美;
2.經(jīng)歷作圖過程,培養(yǎng)學(xué)生尊重科學(xué),實事求是的作風(fēng)。
二、教材分析
本節(jié)課是在學(xué)習(xí)了一次函數(shù)解析式的基礎(chǔ)上,從圖象這個角度對一次函數(shù)進(jìn)行近一步的研究。教材先介紹了作函數(shù)圖象的一般方法:列表、描點、連線法,再進(jìn)一步總結(jié)出作一次函數(shù)圖象的特殊方法,兩點連線法。結(jié)合一次函數(shù)的圖象,教材以議一議的方式,引導(dǎo)學(xué)生探索函數(shù)解析式與圖象二者間的關(guān)系,為進(jìn)一步學(xué)習(xí)圖象及性質(zhì)奠定了基礎(chǔ)。
教學(xué)重點:了解作函數(shù)圖象的一般步驟,會熟練作出一次函數(shù)圖象。
教學(xué)難點:一次函數(shù)及圖象之間的對應(yīng)關(guān)系。
三、學(xué)情分析
函數(shù)的圖象的概念及作法對學(xué)生而言都是較為陌生的。教材從作函數(shù)圖象的一般步驟開始介紹,得出一次函數(shù)圖象是條直線。在此基礎(chǔ)上介紹用兩點連線得一次函數(shù)的圖象,學(xué)生就容易接受了。在函數(shù)解析式與圖象二者之間的探討這部分內(nèi)容上,不要作更高要求,學(xué)生能回答書中的問題就可以了。教學(xué)中盡可能的多作幾個一次函數(shù)的圖象,讓學(xué)生直觀感受到一次函數(shù)的圖象是條直線。
四、教學(xué)流程
一、復(fù)習(xí)引入
下圖是小紅某天內(nèi)體溫變化情況的曲線圖。你知道這幅圖是怎樣作出來的嗎?把每個時間與其對應(yīng)的體溫分別作為點的橫坐標(biāo)和縱坐標(biāo),在直角坐標(biāo)系中描出這些點,這樣就可以作出這個圖象。
二、新課講解
把一個函數(shù)的自變量和對應(yīng)的因變量的值分別作為點的橫坐標(biāo)和縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對應(yīng)點,所有這些點組成的圖形叫做該函數(shù)的圖象。
下面我們來作一次函數(shù)y = x+1的圖象
分析:根據(jù)定義,需要在直角坐標(biāo)系中描出許多點,因此我們應(yīng)先計算這些點的橫、縱坐標(biāo),即x與對應(yīng)的y的值。我們可借助一個表格來列出每一對x,y的值。因為一次函數(shù)的自變量X可以取一切實數(shù),所以X一般在0附近取值。
解:列表:
描點:以表中各組對應(yīng)值作為點的坐標(biāo),在直角坐標(biāo)系內(nèi)描出相應(yīng)的點。
連線:把這些點依次連接起來,得到y(tǒng) = x+1圖象(如圖)它是一條直線。
三、做一做
。1)仿照上例,作出一次函數(shù)y= ?2x+5的圖象。
師:回顧剛才的`作圖過程,經(jīng)歷了幾個步驟?
生:經(jīng)歷了列表、描點、連線這三個步驟。
師:回答得很好。作函數(shù)圖象的一般步驟是列表、描點、連線。今后我們可以用這個方法去作出更多函數(shù)的圖象。
師:從剛才同學(xué)們作出的一次函數(shù)的圖象中我們可以觀察到一次函數(shù)圖象是一條直線。
。2)在所作的圖象上取幾個點,找出它們的橫、縱坐標(biāo),驗證它們是否都滿足關(guān)系:y= ?2x+5
四、議一議
(1)滿足關(guān)系式y(tǒng)= ?2x+5的x 、 y所對應(yīng)的點(x,y)都在一次函數(shù)y= ?2x+5的圖象上嗎?
(2)一次函數(shù)y= ?2x+5的圖象上的點(x,y)都滿足關(guān)系式y(tǒng)= ?2x+5嗎?
(3)一次函數(shù)y=kx+b的圖象有什么特點?
一次函數(shù)y=kx+b的圖象是一條直線,因此作一次函數(shù)的圖象時,只要確定兩個點,再過這兩個點作直線就可以了。一次函數(shù)y=kx+b的圖象也稱為直線y=kx+b
例1做出下列函數(shù)的圖象
點評:作一次函數(shù)圖象時,通常選取的兩點比較特殊,即為一次函數(shù)和X軸、 y軸的交點,在列表計算時,分別令X=0,y=0就可計算出這兩點的坐標(biāo)。正比例函數(shù)當(dāng)X=0時,y=0,即與x 、 y鈾的交點重合于原點。因此做正比例函數(shù)的圖象時,只需再任取一點,過它與坐標(biāo)原點作一條直線即可得到正比例函數(shù)的圖象。從而正比例函數(shù)y=kx的圖象是經(jīng)過原點(0,0)的一條直線。
練一練:作出下列函數(shù)的圖象:
。1)y= ?5x+2, (2)y= x
(3)y=2x?1,(4)y=5x
五、課堂小結(jié)
這節(jié)課我們學(xué)習(xí)了一次函數(shù)的圖象。一次函數(shù)的圖象是一條直線,正比例函數(shù)的圖象是經(jīng)過原點的一條直線。在作圖時,只需確定直線上兩點的位置,就可得到一次函數(shù)的圖象。一般地,作函數(shù)圖象的三個步驟是:列表、描點、連線。
六、課后練習(xí)
隨堂練習(xí)習(xí)題6.3
五、教學(xué)反思
本節(jié)課主要介紹作函數(shù)圖象的一般方法,通過對一次函數(shù)圖象的認(rèn)識,得到作一次函數(shù)及正比例函數(shù)的圖象的特殊方法(兩點確定一條直線)。讓學(xué)生能夠迅速找到直線與坐標(biāo)軸的交點,這是本節(jié)課的難點。數(shù)形結(jié)合,找準(zhǔn)這兩個特殊點坐標(biāo)的特點(x=0或y=0),讓學(xué)生理解的記憶才能收到較好的效果。
《函數(shù)的圖象》數(shù)學(xué)教學(xué)方案設(shè)計 8
一、教材的地位和作用
本節(jié)課主要是在學(xué)生學(xué)習(xí)了函數(shù)圖象的基礎(chǔ)上,通過動手操作接受一次函數(shù)圖象是直線這一事實,在實踐中體會兩點法的簡便,向?qū)W生滲透數(shù)形結(jié)合的數(shù)學(xué)思想,以使學(xué)生借助直觀的圖形,生動形象的變化來發(fā)現(xiàn)兩個一次函數(shù)圖象在直角坐標(biāo)系中的位置關(guān)系。培養(yǎng)學(xué)生主動學(xué)習(xí)、主動探索、合作學(xué)習(xí)的能力。本節(jié)課為探索一次函數(shù)性質(zhì)作準(zhǔn)備。
(一)教學(xué)目標(biāo)的確定
教學(xué)目標(biāo)是教學(xué)的出發(fā)點和歸宿。因此,我根據(jù)新課標(biāo)的知識、能力和德育目標(biāo)的要求,以學(xué)生的認(rèn)知點,心理特點和本課的特點來制定教學(xué)目標(biāo)。
1、知識目標(biāo)
(1)能用兩點法畫出一次函數(shù)的圖象。
(2)結(jié)合圖象,理解直線y=kx+b(k、b是常數(shù),k0)常數(shù)k和b的取值對于直線的位置的影響。
2、能力目標(biāo)
(1)通過操作、觀察,培養(yǎng)學(xué)生動手和歸納的能力。
(2)結(jié)合具體情境向?qū)W生滲透數(shù)形結(jié)合的數(shù)學(xué)思想。
3、情感目標(biāo)
(1)通過動手操作,觀察探索一次函數(shù)的特征,體驗數(shù)學(xué)研究和發(fā)現(xiàn)的過程,逐步培養(yǎng)學(xué)生在教學(xué)活動中的主動探索的意識和合作交流的習(xí)慣。
(2)讓學(xué)生通過直觀感知、動手操作去經(jīng)歷、體會規(guī)律形成的過程。
(二)教學(xué)重點、難點
用兩點法畫出一次函數(shù)的圖象是研究一次函數(shù)的性質(zhì)的基礎(chǔ),是本節(jié)課的重點。直線y=kx+b(k、b是常數(shù),k0)常數(shù)k和b的取值對于直線的位置的影響,是本節(jié)課的難點。關(guān)鍵是通過學(xué)生的直觀感知、動手操作、合作交流歸納其規(guī)律。
二、學(xué)情分析
1、由用描點法畫函數(shù)的圖象的認(rèn)識,學(xué)生能接受一次函數(shù)的圖象是直線,結(jié)合兩點確定一條直線,學(xué)生能畫出一次函數(shù)圖象。
2、根據(jù)學(xué)生抽象歸納能力較差,學(xué)習(xí)直線y=kx+b(k、b是常數(shù),k0)常數(shù)k和b的取值對于直線的位置的影響有難度。所以教學(xué)中應(yīng)盡可能多地讓學(xué)生動手操作,突出圖象變化特征的探索過程,自主探索出其規(guī)律。
3、抓住初中學(xué)生的心理特征,運用直觀生動的形象,引發(fā)學(xué)生的興趣,吸引他們的注意力;另一方面積極創(chuàng)造條件和機(jī)會,讓學(xué)生發(fā)表見解,發(fā)揮學(xué)生學(xué)習(xí)的主動性。
三、教學(xué)方法
我采用自主探究合作交流式教學(xué),讓學(xué)生動手操作,主動去探索,小組合作交流。而互動式教學(xué)將顧及到全體學(xué)生,讓全體學(xué)生都參與,達(dá)到優(yōu)生得到培養(yǎng),后進(jìn)生也有所收獲的效果。
四、教學(xué)設(shè)計
一、設(shè)疑,導(dǎo)入新課(2分鐘)
師:同學(xué)們,上節(jié)課我們學(xué)習(xí)了一次函數(shù),你能說一說什么樣的函數(shù)是一次函數(shù)嗎?
生1:函數(shù)的解析式都是用自變量的一次整式表示的,我們稱這樣的函數(shù)為一次函數(shù)。
生2:一次函數(shù)通常可以表示為y=kx+b的形式,其中k、b為常數(shù),k0。
生3:正比例函數(shù)也是一次函數(shù)。
師:(同學(xué)們回答的都很好)通過前面的學(xué)習(xí)我們可以發(fā)現(xiàn),一次函數(shù)是一種特殊的函數(shù),那么一次函數(shù)的圖象是什么形狀呢?
這節(jié)課讓我們一起來研究 一次函數(shù)的圖象。(板書)
二、自主探究小組交流、歸納問題升華:
1、師:問(1)你們知道一次函數(shù)是什么形狀嗎?(4分鐘)
生:不知道。
師:那就讓我們一起做一做,看一看:(出示幻燈片)
用描點法作出下列一次函數(shù)的圖象。
(1) y= 0.5x (2) y= 0.5x+2
(3) y= 3x (4) y= 3x + 2
師:(為了節(jié)約時間)要求:用描點法時,最少5個點;以小組為單位,由小組長分配,每人畫一個圖象。畫完后,小組訂正,看是否畫的正確?
然后討論解決問題(1):觀察你和你的同伴畫出的圖象,你認(rèn)為一次函數(shù)的圖象是什么形狀?
小組匯報:一次函數(shù)的圖象是直線。
師:所有的一次函數(shù)圖象都是直線嗎?
生:是。
師:那么一次函數(shù)y=kx+b(其中k、b為常數(shù),k0),也可以稱為直線y=kx+b(其中k、b為常數(shù),k0)。(板書)
師:(出示幻燈片)問(2):觀察你和你的同伴所畫的圖象在位置上有沒有不同之處?(2分鐘)
討論正比例函數(shù)的圖象與一般的一次函數(shù)圖象在位置上有沒有不同之處。
小組1:正比例函數(shù)圖象經(jīng)過原點。
小組2:正比例函數(shù)圖象經(jīng)過原點,一般的一次函數(shù)不經(jīng)過原點。
師出示幻燈片3(使學(xué)生再一次加深印象)
師:問(3):對于畫一次函數(shù)y=kx+b(其中k)b為常數(shù),k0)的圖象直線,你認(rèn)為有沒有更為簡便的.方法?
(一邊思考,可以和同桌交流)(2分鐘)
生1:用3個點。
生2:老師我這個更簡單,用兩個點。因為兩點確定一條直線嘛!
生3:如畫y=0.5x的圖象,經(jīng)過(0,0)點和(2,1)點這兩個點做直線就行。
師:我們都認(rèn)為畫一次函數(shù)圖象,只過兩個點畫直線就行。
(幻燈片4:師,動畫演示用兩點法畫一次函數(shù)的過程)
師:做一做,請你用兩點法在剛才的直角坐標(biāo)系中,畫出其余三個一次函數(shù)的圖象。(比一比誰畫的既快又好)(4分鐘)
師:問(4):和你的同伴比一比,看誰取的那兩個點更為簡便一些?
組1:若是正比例函數(shù),我們組先取(0,0)點,如畫y=0.5x的圖象,我們再了取(2,1)點。這樣找的坐標(biāo)都是整數(shù)。
組2:我們組認(rèn)為盡量都找整數(shù)。
組3:我們組認(rèn)為都從兩條坐標(biāo)軸上找點,這樣比較準(zhǔn)確。如y=3x+2,我們?nèi)↑c(0,3)和點(-2/3,0)
組4:我們組認(rèn)為,正比例函數(shù)經(jīng)過(0,0)點和(1,k)點;一般的一次函數(shù)經(jīng)過(0,b)點和(-b/k,0)點。
師:同學(xué)們說的都很好。我覺得可以根據(jù)情況來取點。
2、師:我們現(xiàn)在已經(jīng)用:兩點法把四個一次函數(shù)圖象準(zhǔn)確而又迅速地畫在了一個直角坐標(biāo)系中,這四個函數(shù)圖象之間在位置上有沒有什么關(guān)系呢?
問(1):(由自己所畫的圖象)觀察下列各對一次函數(shù)圖象在位置上有什么關(guān)系?(獨自觀察學(xué)生回答)(3分鐘)
、賧=0.5x與y=0.5x+2;②y=3x與y=3x+2;③y=0.5x與y=3x;④y=0.5x+2與y=3x+2。
生1:①y=0.5x與y=0.5x+2;兩直線平行。
生2:②y=3x與y=3x+2;兩直線平行。
生3:③y=0.5x與y=3x;兩直線相交。
生4:④y=0.5x+2與y=3x+2;兩直線相交。
師:其他同學(xué)有沒有補(bǔ)充?
生5:③y=0.5x與y=3x都是正比例函數(shù);兩直線相交,并且交點是點(0,0)點。
生6:老師,我也發(fā)現(xiàn)了④y=0.5x+2與y=3x+2的圖象相交,并且交點是點(0,2)。
師:(出示幻燈片5)同學(xué)們回答都不錯,我們要向生5和生6學(xué)習(xí),學(xué)習(xí)他們的細(xì)致思考。
師:問(2),直線y=kx+b(k0)中常數(shù)k和b的值對于兩個函數(shù)的圖象的位置關(guān)系平行或相交,有沒有影響?說說你的看法。(5分鐘)
(學(xué)生自主探究小組交流、歸納師生共同總結(jié))
組1:我們組發(fā)現(xiàn),常數(shù)k和b的值對于兩個函數(shù)的圖象的位置關(guān)系平行或相交,有影響,當(dāng)k的值相同時,兩直線平行;當(dāng)k的值不同時,兩直線相交。
生:我認(rèn)為他的說法不確切,當(dāng)k值相同,且b值不同時,兩直線相交。因為當(dāng)k值相同,且b值也相同時,兩個函數(shù)關(guān)系式不就成為一個函數(shù)關(guān)系式了嗎?
組2:我們組同意生的看法,當(dāng)k值相同,且b值不同時,兩直線平行;當(dāng)k值不同時,兩直線相交當(dāng)k值相同,且b值不同時,兩直線相交。
組3:我們組還發(fā)現(xiàn),當(dāng)k值相同,且b值不同時,兩直線相交;當(dāng)k值相同,且b值也相同時,兩直線相交的交點特殊。如③y=0.5x與y=3x;相交,交點是(0,0)④y=0.5x+2與y=3x+2,相交,交點是(0,2)。我們認(rèn)為,當(dāng)k值相同,且b值也相同時,兩直線相交的交點是(0,b)。
師:(出示小規(guī)律)同學(xué)們觀察的都很仔細(xì),回答很好,要繼續(xù)努力!
師:剛才同學(xué)說的,當(dāng)k值相同,且b值也相同時,兩個函數(shù)圖象又是什么樣的位置關(guān)系?(因為兩直線的位置關(guān)系學(xué)生都會,所以學(xué)生很容易回答)
生:重合。
師:老師考一考你,有沒有信心?
生:有。
師:(出示幻燈片6)不畫圖象,你能說出下列每對函數(shù)的圖象位置上有什么關(guān)系嗎?
、僦本y=-2x-1與直線y=-2x+5; ②直線y=0.6x-3與直線y=-x-3。
生1:①兩直線平行。②兩直線相交,交點是(0,-3)。
生2:①兩直線平行。②兩直線相交,交點是(0,-3)。
師:一次函數(shù)的圖象都是直線,它們的形狀都 ,只是位置 。
問(3):我們能不能將其中一條直線通過平移、旋轉(zhuǎn)或?qū)ΨQ性,使它們和另一條直線重合。你試試看。(自主探索同桌交流)(3分鐘)
生1:(幻燈片5)①y=0.5x與y=0.5x+2;將y=0.5x平移能得到y(tǒng)=0.5x+2。
生2:③y=0.5x與y=3x;將y=0.5x旋轉(zhuǎn)后能得到y(tǒng)=3x。
生3:②y=3x與y=3x+2;通過平移能得到y(tǒng)=3x+2。④y=0.5x+2與y=3x+2。通過旋轉(zhuǎn)能得到y(tǒng)=3x+2。
師:同學(xué)們規(guī)律找得都很好,我們這節(jié)課只研究平移。
問(4):①y=0.5x與y=0.5x+2平行,觀察圖象,直線y=0.5x沿y軸向 (向上或向下),平行移動 單位得到y(tǒng)=0.5x+2?組②呢?(5分鐘)
(學(xué)生動力操作嘗試小組交流歸納小組匯報)
組1:直線y=0.5x與y=0.5x+2平行,觀察圖象,直線y=0.5x沿y軸向 上 (向上或向下),平行移動2個單位得到y(tǒng)=0.5x+2。
組2:直線y=3x向上平移2個單位能得到直線y=3x+2。
組3:直線y=3x+2向下平移2個單位能得到直線y=3x。
生4:老師,我發(fā)現(xiàn)直線y=0.5x+2向下平移2個單位能得到直線y=0.5x。
生5:老師,我們組發(fā)現(xiàn)直線y=0.5x沿y軸向 上 (向上或向下),平行移動2個單位得到y(tǒng)=0.5x+2。在這個過程中,都是0.5,卻加上了個2。
師:(同學(xué)們說的都很好,生5的發(fā)現(xiàn)更好,)
師:出示幻燈片7,然后按來通過動畫演示平行移動的過程。
問(5):在上面的2個變化過程中,觀察關(guān)系式中k和b的值有沒有變化?有什么樣的變化?(生獨立思考,回答)(3分鐘)
生1:k值不變,b值變化。
生2:k值不變,b值變化;當(dāng)向上平移幾個單位,b值就加上幾;當(dāng)向下平移幾個單位,b就減去幾。
師:出示幻燈片7上的小規(guī)律。
做一做:(獨立完成小組交流師生總結(jié))(4分鐘)
(1)將直線y= -3x沿 y軸向下平移2個單位,得到直線( )。
(2)直線y=4x+2是由直線y=4x-1沿y軸向( )平移( )個單位得到的。
(3)將直線y=-x-5向上平移6個單位,得到直線( )。
(4)先將直線y=x+1向上平移3個單位,再向下平移5個單位,得到直線( )。
組1匯報結(jié)果。
師:在這些問題中還有沒有需要老師幫忙解決的?
生:沒有。
三、你能談?wù)勀氵@節(jié)課的收獲嗎?(2分鐘)
生1:我知道了一次函數(shù)圖象是直線,所以可以說直線y=kx+b(k0)
我還學(xué)會了用兩點法畫一次函數(shù)的圖象。
生2:我覺得學(xué)習(xí)一次函數(shù),既離不開數(shù),也離不開圖形。
生3:我知道當(dāng)k值相同,b值不同時,兩個一次函數(shù)圖象平行,當(dāng)k值不同時,兩個次函數(shù)圖象相交。
生4:我知道一條直線通過平移可以得到另一條直線,函數(shù)關(guān)系式中k,b值的變化情況。
四、測一測:(6分鐘)
師:老師覺得你們學(xué)的不錯,你們認(rèn)為自己學(xué)的怎么樣?
生:好
師:讓我們比一比,看一看誰是這節(jié)課學(xué)得最好的?哪個小組是最優(yōu)秀的小組?
師出示幻燈片,提出要求:獨立完成測試題,不能偷看別人的,也不能別人看,否則按作弊處理,給個人和小組都扣分)
一、填空:
1、一次函數(shù)y=kx+b(k0)的圖象是( ),若該函數(shù)圖象過原點,那么它是( )。
2、如果直線y=kx+b與直線y=0.5x平行,且與直線y=3x+2交于點(0,2),則該直線的函數(shù)關(guān)系式是( )。
3、把直線y=2/3x+1向上平行移動3個單位,得到的圖象的關(guān)系式是( )
4、直線y=-2x+1與直線y=-2x-1的關(guān)系是( ),直線y=-x+4與直線y=3x+4的關(guān)系是( )。
5、直線y1=(2m-1)x+1與直線y2=(m+4)x-3m平行,則m的取值是( )。
二、選擇:6、在函數(shù)y=kx+3中,當(dāng)k取不同的非零實數(shù)時,就得到不同的直線,那么這些直線必定( )
A、交于同一個點 B、互相平行
C、有無數(shù)個不同的交點 D、交點的個數(shù)與k的具體取值有關(guān)
7、函數(shù)y=3x+b,當(dāng)b取一系列不同的數(shù)值時,它們圖象的共同點是( )
A、交于同一個點 B、互相平行的直線
C、有無數(shù)個不同的交點 D、交點個數(shù)的多少與b的具體取值有關(guān)
在做完之后,師:小組之間交換測試題,老師出示幻燈片上的答案。
師:看完之后,統(tǒng)計出其小組的成員的成績以及平均分?jǐn)?shù),就是該小組的成績。(老師對優(yōu)秀個人和小組給予表揚!)
師:同學(xué)們,個人更正錯題,可以小組幫助,也可以請老師幫助。
師給予學(xué)生一定的時間,問:同學(xué)們對于這節(jié)課還有沒有疑問?
生:沒有。
四、作業(yè):
在同一坐標(biāo)系中畫出下列函數(shù)的圖象,并說出它們有什么關(guān)系?
(1)y=2x與y=2x+3
(2)y=-x+1與y=-3x+1
五、課外延伸:
直線y=0.5x沿x軸向 (向左或向右),平行移動 個單位得到直線y=0.5x+2。
六、教后反思:
在本節(jié)課的教學(xué)中,我堅持以學(xué)生為主體,采用自主探究小組合作、交流問題升華的教學(xué)模式。既注重學(xué)生基礎(chǔ)知識的掌握,又重視學(xué)生學(xué)習(xí)習(xí)慣、自主探究、合作學(xué)習(xí)能力的培養(yǎng),同時每一個問題都向?qū)W生滲透數(shù)學(xué)形結(jié)合的數(shù)學(xué)思想。每一個問題的解決我都堅持做到:給學(xué)生自主探究問題的機(jī)會;在學(xué)生想展示自己的做法時,給學(xué)生充足的時間讓他們?nèi)ズ献鹘涣鳟?dāng)學(xué)習(xí)達(dá)到高潮時,引導(dǎo)學(xué)生將問題延伸,升華思想;最后,精心設(shè)計問題,拓寬學(xué)生知識面,培養(yǎng)創(chuàng)造性思維。
《函數(shù)的圖象》數(shù)學(xué)教學(xué)方案設(shè)計 9
教學(xué)目標(biāo)
1、了解正比例函數(shù)y=kx的圖象的特點。
2、會作正比例函數(shù)的圖象。
3、理解一次函數(shù)及其圖象的有關(guān)性質(zhì)。
4、能熟練地作出一次函數(shù)的圖象
教學(xué)重點
正比例函數(shù)的圖象的特點。
教學(xué)難點
一次函數(shù)的圖象的性質(zhì)。
教學(xué)過程:
1、新課導(dǎo)入
上節(jié)課我們學(xué)習(xí)了如何畫一次函數(shù)的圖象,步驟為
①列表;
、诿椟c;
、圻B線。
經(jīng)過討論我們又知道了畫一次函數(shù)的圖象不需要許多點,只要找兩點即可,還明確了一次函數(shù)的代數(shù)表達(dá)式與圖象之間的對應(yīng)關(guān)系。
本節(jié)課我們進(jìn)一步來研究一次函數(shù)的圖象的其他性質(zhì)。
2、講授新課
。1)首先我們來研究一次函數(shù)的特例——正比例函數(shù)有關(guān)性質(zhì)。
請大家在同一坐標(biāo)系內(nèi)作出正比例函數(shù)y=x,y=x,y=3x,y=-2x的圖象。
如圖:
3、議一議
。1)正比例函數(shù)y=kx的圖象有什么特點?(都經(jīng)過原點)
。2)你作正比例函數(shù)y=kx的圖象時描了幾個點?(至少兩點)
。3)直線y=x,y=x,y=3x中,哪一個與x軸正方向所成的銳角最大?哪一與x軸正方向所成的銳角最小?
4、小結(jié):正比例函數(shù)的圖象有以下特點:
。1)正比例函數(shù)的圖象都經(jīng)過坐標(biāo)原點。
。2)作正比例函數(shù)y=kx的圖象時,除原點外,還需找一點,一般找(1,k)點。
。3)在正比例函數(shù)y=kx圖象中,當(dāng)k>0時,k的值越大,函數(shù)圖象與x軸正方向所成的銳角越大。
(4)在正比例函數(shù)y=kx的圖象中,當(dāng)k>0時,y的值隨x值的增大而增大;當(dāng)k<0時,y的值隨x值的增大而減小。
5、做一做
在同一直角坐標(biāo)系內(nèi)作出一次函數(shù)y=2x+6,y=-x,y=-x+6,y=5x的圖象。
一次函數(shù)y=kx+b的圖象的特點:分析:在函數(shù)y=2x+6中,k>0,y的值隨x值的增大而增大;在函數(shù)y=-x+6中,y的值隨x值的增大而減小。
由上可知,一次函數(shù)y=kx+b中,y的值隨x的變化而變化的情況跟正比例函數(shù)的圖象的'性質(zhì)相同。對照正比例函數(shù)圖象的性質(zhì),可知一次函數(shù)的圖象不過原點,但是和兩個坐標(biāo)軸相交。在作一次函數(shù)的圖象時,也需要描兩個點。一般選取(0,b),(-,0)比較簡單。
6、想一想
。1)x從0開始逐漸增大時,y=2x+6和y=5x哪一個值先達(dá)到20?這說明了什么?(y=5x的函數(shù)值先達(dá)到20,這說明隨著x的增加,y=5x的函數(shù)值比y=2x+6的函數(shù)值增加得快)
。2)直線y=-x與y=-x+6的位置關(guān)系如何?(平行,一次函數(shù)k相同就平行)
。3)直線y=2x+6與y=-x+6的位置關(guān)系如何?(相交)
教法、學(xué)法:
知識擴(kuò)充
7、課堂練習(xí)
1、下列一次函數(shù)中,y的值隨x值的增大而增大的是()
A、y=-5x+3B、y=-x-7C、y=-D、y=-+4
2、下列一次函數(shù)中,y的值隨x值的增大而減小的是()
A、y=x-8B、y=-x+3C、y=2x+5D、y=7x-6
六、課后小結(jié)
1、正比例函數(shù)y=kx的圖象的特點。2、一次函數(shù)y=kx+b的圖象的特點。
七、課堂作業(yè)
課本P1861,2,3,4
《函數(shù)的圖象》數(shù)學(xué)教學(xué)方案設(shè)計 10
【學(xué)習(xí)目標(biāo)】
1、了解利用正弦線作正弦函數(shù)圖象的方法;
2、掌握正、余弦函數(shù)圖象間的關(guān)系;
3、會用“五點法”畫出正、余弦函數(shù)的圖象。
預(yù)習(xí)課本P30—33頁的內(nèi)容
【新知自學(xué)】
知識回顧:
1、正弦線、余弦線、正切線:
設(shè)角α的終邊落在第一象限,第二象限,則有向線段 為正弦線、余弦線、正切線。
2、函數(shù)圖像的畫法:
描點法:列表,描點,連線
新知梳理:
1、正弦線、余弦線:設(shè)任意角α的終邊與單位圓相交于點P(x,y),過P作x軸的垂線,垂足為M,則有向線段_________叫做角α的正弦線,有向線段___________叫做角α的余弦線。
2、正弦函數(shù)圖象畫法(幾何法):
(1)函數(shù)y=sinx,x∈的圖象
第一步:12等分單位圓;
第二步:平移正弦線;
第三步:連線。
根據(jù)終邊相同的同名三角函數(shù)值相等,把上述圖象沿著x軸向右和向左連續(xù)地平行移動,每次移動的距離為______,就得到y(tǒng)=sinx,x∈R的圖象。
感悟:一般情況下,兩軸上所取的單位長度應(yīng)該相同,否則所作曲線的“胖瘦不一”,形狀各不相同。
。2)余弦函數(shù)y=cosx,x∈的圖象
根據(jù)誘導(dǎo)公式 ,還可以把正弦函數(shù)x=sinx的圖象向左平移 單位即得余弦函數(shù)y=cosx的圖象。
探究: 正弦函數(shù)曲線怎么變換可以得到余弦曲線?方法唯一嗎?
3、正弦函數(shù)y=sinx的圖象和余弦函數(shù)y=cosx的圖象分別叫做正弦曲線和余弦曲線。
4、“五點法”作正弦函數(shù)和余弦函數(shù)的簡圖:
。1)正弦函數(shù)y=sinx,x∈的圖象中,五個關(guān)鍵點是:
。0,0),__________, (p,0),
_________,(2p,0)。
。2) 余弦函數(shù)y=cosx,x?的圖象中,五個 關(guān)鍵點是:
。0,1),_________,(p,—1),__________,(2p,1)。
對點練習(xí):
1、函數(shù)y=cosx的圖象經(jīng)過點( )
A、( ) B、( )
C、( ,0 ) D、( ,1)
2、 函數(shù)y=sinx經(jīng)過點( ,a),則的值是( )
A、1 B、—1 C、0 D、
3、 函數(shù)y=sinx,x∈的圖象與直線y= 的'交點個數(shù)是( )
A、1 B、2 C、0 D、3
4、 sinx≥0,x∈的解集是________________________、
【合作探究】
典例精析:
題型一:“五點法”作簡圖
例1、作函數(shù)y=1+sinx,x∈ 的簡圖。
變式1、畫出函數(shù)y=2sinx ,x∈〔0,2π〕的簡圖。
題型二:圖象變換作簡圖
例2、用圖象變換作 下列函數(shù)的簡圖:
。1)y=—sinx;
(2)y=|cosx|,x 、
題型三:正、余弦函數(shù)圖象的應(yīng)用
例3 利用函數(shù)的圖象,求滿足條件sinx ,x 的x的集合。
變式2 、求滿足條件cosx ,x 的x的集合。
【課堂小結(jié)】
知識
p; 方法 思想
【當(dāng)堂達(dá)標(biāo)】
1、函數(shù)y=—sinx的圖象經(jīng)過點( )
A、( ,—1) B、( ,1)
C、( ,—1) D、( ,1)
2、函數(shù)y=1+sinx, x 的圖象與直線y=2的交點個數(shù)是( )
A、0 B、1 C、2 D、3
3、方程x2=cosx的解的個數(shù)是( )
A、0 B、1 C、2 D、3
4、求函數(shù) 的定義域。
【課時作業(yè)】
1、用“五點法”畫出函數(shù)y=sin x—1,x 的圖象。
2、用變換法畫出函數(shù)y=—cosx, x 的圖象。
3、 求滿足條件cosx (x 的x的集合。
4、在同一 坐標(biāo)系內(nèi),觀察正、余弦函數(shù)的圖象,在區(qū)間 內(nèi),寫出滿足不等式sinx≤cos的集合。
【延伸探究】
5、方程sinx=x的解的個數(shù)是_____________________、
6、畫出函數(shù)y=sin|x|的圖象。
【《函數(shù)的圖象》數(shù)學(xué)教學(xué)方案設(shè)計】相關(guān)文章:
數(shù)學(xué)方案怎么做 數(shù)學(xué)方案設(shè)計思維導(dǎo)圖03-03
高中數(shù)學(xué)函數(shù)的教學(xué)論文08-16
函數(shù)教學(xué)論文07-26
小學(xué)數(shù)學(xué)教學(xué)評價方案設(shè)計小學(xué)數(shù)學(xué)課堂教學(xué)評價方式02-01
數(shù)學(xué)《8和9的認(rèn)識》教學(xué)方案設(shè)計(精選10篇)10-14
高一數(shù)學(xué)《函數(shù)的概念》教學(xué)設(shè)計(通用8篇)10-24
藏戲教學(xué)方案設(shè)計10-06