亚洲色影视在线播放_国产一区+欧美+综合_久久精品少妇视频_制服丝袜国产网站

報告

力學(xué)讀書報告

時間:2024-09-17 09:29:46 報告 我要投稿
  • 相關(guān)推薦

力學(xué)讀書報告范本

  這學(xué)期有幸跟著XO老師學(xué)習(xí)應(yīng)用彈塑性力學(xué),知道了彈塑性力學(xué)是固體力學(xué)的一個重要分支,是研究彈性和彈塑性物體變形規(guī)律的一門科學(xué)。彈性階段與彈塑性階段是可變形固體整個變形階段中不同的兩個變形階段,而彈塑性力學(xué)就是研究這兩個密切相連的變形階段力學(xué)問題的一門科學(xué)。使我對固體材料變形的全過程有了一個較完整地認(rèn)識,對彈塑性力學(xué)的基礎(chǔ)理論和基本方法有比較完整地了解。同時也有利于對固體力學(xué)各分支學(xué)科相關(guān)的重要基本概念和基礎(chǔ)理論的理解和掌握。

力學(xué)讀書報告范本

  首先,彈塑性力學(xué)的研究對象是可變形固體受到外力作用或溫度變化的影響而產(chǎn)生的應(yīng)力、應(yīng)變和位移及其分布變化規(guī)律的一門科學(xué)。它是固體力學(xué)的一個分支學(xué)科。一切工程結(jié)構(gòu)物皆由一定的固體材料按某種形式組合而成。在結(jié)構(gòu)的使用過程中,其中每個構(gòu)件部位將受到外力的作用或外界因素的影響,如溫度的變化等。例如,礦山的硐室、巷道和建筑物的基礎(chǔ)等地下結(jié)構(gòu),由巖石和混凝土的砌襯組成,它們受到大地壓力或其他物體的作用。毫無疑問,它們在外力作用下將會產(chǎn)生變形,且在其體內(nèi)產(chǎn)生應(yīng)力。工程建設(shè)實踐表明,掌握結(jié)構(gòu)中各部分的應(yīng)力分布和變形規(guī)律,具有極為重要的意義。這不僅涉及到結(jié)構(gòu)物的安全可靠性,而且影響到經(jīng)濟(jì)性問題。

  在長期的生產(chǎn)斗爭和科學(xué)實驗中,人們認(rèn)識到幾乎所有的變形固體材料都在不同程度上具有彈性和塑性的性能。固體受外力作用時,

  一定會產(chǎn)生變形。當(dāng)外力小于某一數(shù)值時,卸去外載后,變形可完全消失,固體恢復(fù)原狀。我們就將固體能自動恢復(fù)變形的性能稱為彈性,能自動恢復(fù)的變形稱為彈性變形,只產(chǎn)生彈性變形的階段稱為彈性變形階段。若當(dāng)固體所受外力的大小達(dá)到并超過某一限度后,即使卸去外載,固體除能自動恢復(fù)一部分彈性變形外,大部分的變形卻被永久地遺留下來。我們就將固體材料能夠產(chǎn)生永久變形的性能稱為塑性,遺留下來的不能恢復(fù)的變形稱為塑性變形,而這一變形階段則稱為塑性變形階段。可變形固體在受載過程中產(chǎn)生的彈性變形階段和塑性變形階段是整個變形過程中的不同而又連續(xù)的兩個階段。彈塑性力學(xué)則是研究這兩個密切相連變形階段的力學(xué)問題的一門科學(xué)。

  彈塑性力學(xué)在研究方法上同材料力學(xué)和結(jié)構(gòu)力學(xué)足有區(qū)別的。一般來說,彈塑性力學(xué)的研究對象盡管也是可變形同體,但它不受幾何尺寸和形狀的限制,能適應(yīng)各種工程技術(shù)問題的需求。彈塑性力學(xué)與材料力學(xué)、結(jié)構(gòu)力學(xué)同屬固體力學(xué)的范疇。就其求解問題的根本思路基本上是相同的,彈塑性力學(xué)的研究對象比材料力學(xué)和結(jié)構(gòu)力學(xué)更為廣泛。其根本原因就在于它們的基本研究方法的不同。在材料力學(xué)和結(jié)構(gòu)力學(xué)中主要是采用簡化的初等理論可以描述的數(shù)學(xué)模型。而在彈塑性力學(xué)中,則將采用較精確的數(shù)學(xué)模型。例如,材料力學(xué)是以平面截面假設(shè)為前提,經(jīng)簡化計算得出工程桿件產(chǎn)生幾種基本變形或組合變形時的實用但較為近似的解答。彈塑性力學(xué)別是從各種受力固體內(nèi)一點處的單元體(無限小微分體)的應(yīng)力狀態(tài)和應(yīng)變狀態(tài)入手,通過分析建立起普遍適用的基本方程和理論,并考慮和滿足具體問題的不

  同邊界條件,從而求得反映固體的應(yīng)力和應(yīng)變分布規(guī)律的更精確的解答。此外,有些工程問題用材料力學(xué)和結(jié)構(gòu)力學(xué)的理論無法求解,或無法給出精確可靠的結(jié)論及本身理論的誤差,或不能充分發(fā)揮材料的潛在能力,提高經(jīng)濟(jì)效益。而上述問題在彈塑性力學(xué)中則可以得到較完善的解決和評價。

  綜上所述,彈塑性力學(xué)的基本任務(wù)歸納為以下幾點:1確定一般工程結(jié)構(gòu)物在外力作用下的彈塑性變形與內(nèi)力的分布規(guī)律;2建立并給出初等理論無法求解的問題的理論和方法,以及初等理論可靠性與精確度的度量;3確定一般工程結(jié)構(gòu)物的承載能力,充分提高經(jīng)濟(jì)效益;4為進(jìn)一步研究工程結(jié)構(gòu)物的強(qiáng)度、振動、穩(wěn)定性、斷裂等力學(xué)問題奠定必要的理論基礎(chǔ)。

  彈塑性力學(xué)的基本假設(shè)。固體材料一般分為晶體和非晶體兩大類,絕大部分固體都是由晶體集合而成的。從微觀結(jié)構(gòu)看,晶體足由許多微粒有規(guī)則地周期性地排列成一定的結(jié)品格構(gòu)成的。因此,晶體具有遠(yuǎn)程有序性,是各向異性材料,也就是說晶體的物理性質(zhì)、力學(xué)性質(zhì)具有一定的方向性。例如,巖鹽、石英、金屬等。但是,從宏觀尺度上看,許多固體材料都是由眾多晶粒方位雜亂地組合起來的,這時整個固體材料的物理力學(xué)性質(zhì)宏觀上表現(xiàn)為各向同性。因此可視為各向同性材料,例如,鋼材、鋁材、閃長巖、砂巖塊等。有些固體材料即便是從宏觀尺度上看也具有明顯的各向異性,例如,木材、煤巖、砂巖巖層等,這時應(yīng)考慮材料物性的方向性。此外,關(guān)于固體組成材料分布的均勻性,以及固體中常存在的些缺陷等問題,固體力學(xué)也主要

  是從宏觀尺度去加以分析和處理的。因此,在固體力學(xué)中,對于固體物性的方向性、組成材料的均勻性以及結(jié)構(gòu)上的連續(xù)性等問題,是根據(jù)具體研究對象的性質(zhì),并聯(lián)系求解問題的范圍,慎重地加以分析和研究,盡量忽略那些次要的局部的對所研究問題的實質(zhì)影響不大的因素,使問題得以簡化。

  就彈塑性力學(xué)所涉及問題的范圍和研究內(nèi)容的深度而言,我們對固體材料做如下基本假設(shè)

  1假設(shè)固體材料是連續(xù)介質(zhì)。這是固體力學(xué)的一條最基本假設(shè)。在固體力學(xué)的發(fā)展初期,并不認(rèn)為這是一條假說,當(dāng)時認(rèn)為物質(zhì)的連續(xù)性是固體材料的當(dāng)然本質(zhì)。但從現(xiàn)代物質(zhì)結(jié)構(gòu)的理論來看,這種認(rèn)識顯然是與物質(zhì)是由不連續(xù)的粒子所組成的觀點相矛盾。事實上,連續(xù)性假設(shè)與現(xiàn)代物質(zhì)結(jié)構(gòu)理論的矛盾可以采用統(tǒng)計平均的概念統(tǒng)一起來。從統(tǒng)計學(xué)的觀點來看,只要所研究物體的尺寸足夠大,物體的性質(zhì)就與體積的大小無關(guān)。通常,工程上的結(jié)構(gòu)構(gòu)件的尺寸,與基率粒子的大小相比,其數(shù)量級相差非常懸殊。在力學(xué)分析中,從物體中任一點處截取出的一個微小單元體,在數(shù)學(xué)上是一個無限小量,但它卻包含有大量的基本粒子,粒子間的間隙和晶體缺陷等與微小單元體相比,或與物體整體尺寸相比是非常小的量,當(dāng)固體力學(xué)從宏觀的尺度去研究力學(xué)問題時,假設(shè)物質(zhì)結(jié)構(gòu)具有連續(xù)性實際上是合理的。根據(jù)連續(xù)性假設(shè),物體內(nèi)的一些物理量,如表征物體變形和內(nèi)力分布的量,就可以利用數(shù)學(xué)分析這個強(qiáng)有力的工具,用坐標(biāo)的連續(xù)函數(shù)去表示它們。

  2假設(shè)物體是均勻的和各向同性的。就是認(rèn)為構(gòu)成物體的材料在其內(nèi)部每點處,都具有完全相同的力學(xué)性質(zhì),且各點各方向上的性質(zhì)也相同;谶@一假設(shè),通過實驗所測定的材料的物性參數(shù)不隨坐標(biāo)的位置和方向而產(chǎn)生變化。顯然,這一假設(shè)具有重要的實際意義,但是這一假設(shè)應(yīng)視具體的研究情況而做取舍。

  3小變形條件。所謂小變形是指物體在外力作用下,所產(chǎn)生的變形量遠(yuǎn)小于該物體變形前的原始尺寸的情況。這樣,我們在討論物體的平衡和運動問題時,就可以不考慮因變形而引起的尺寸變化而用物體變形前原始尺寸進(jìn)行分析和計算。在推導(dǎo)有關(guān)公式的過程中,高階微量就可以略去不計,從而使問題大為簡化。

  學(xué)習(xí)內(nèi)容包括:應(yīng)用理論,變形幾何理論,彈性變形,塑性變形,本構(gòu)方程,彈性與塑性力學(xué)的基本解法,平面問題直角坐標(biāo)解答,空間軸對稱問題

  五、塑性力學(xué)常用的求解方法

  1靜定法,求解簡單彈塑性問題的方法。由于所求的各未知量的數(shù)目和已知方程式的數(shù)目相同,應(yīng)用平衡方程和屈服條件便能將問題中的各未知量找出。

  2滑移線法,適用于求解塑性平面應(yīng)變問題,可找出變形體中各點的應(yīng)力分量和所對應(yīng)的位移分量

  3界限法,一個有實用價值的方法,又稱上、下限法。上限法采用外力功等于內(nèi)部耗散能以及結(jié)構(gòu)的幾何條件求塑性極限載荷,其值比完全解的塑性極限載荷大,下限法則用平衡條件、屈服條件以及力

【力學(xué)讀書報告】相關(guān)文章:

物理力學(xué)實驗演示報告01-20

工程力學(xué)實習(xí)報告05-07

物理力學(xué)演示實驗報告03-02

力學(xué)實習(xí)報告匯編六篇11-09

工程力學(xué)認(rèn)識的實習(xí)報告參考03-31

理論力學(xué)教學(xué)探討04-01

努力學(xué)習(xí)的作文12-20

金屬力學(xué)性能測試技術(shù)實訓(xùn)報告范文(通用6篇)01-31

努力學(xué)習(xí)作文02-08

努力學(xué)習(xí)勵志語錄02-04