亚洲色影视在线播放_国产一区+欧美+综合_久久精品少妇视频_制服丝袜国产网站

方案

全等三角形教學(xué)方案

時間:2022-10-07 22:38:43 方案 我要投稿
  • 相關(guān)推薦

全等三角形教學(xué)方案

  課題:

全等三角形教學(xué)方案

  全等三角形

  教學(xué)目標(biāo):

  1、知識目標(biāo):

  (1)知道什么是全等形、全等三角形及全等三角形的對應(yīng)元素;

  (2)知道全等三角形的性質(zhì),能用符號正確地表示兩個三角形全等;

  (3)能熟練找出兩個全等三角形的對應(yīng)角、對應(yīng)邊。

  2、能力目標(biāo):

  (1)通過全等三角形角有關(guān)概念的學(xué)習(xí),提高學(xué)生數(shù)學(xué)概念的辨析能力;

  (2)通過找出全等三角形的對應(yīng)元素,培養(yǎng)學(xué)生的識圖能力。

  3、情感目標(biāo):

  (1)通過感受全等三角形的對應(yīng)美激發(fā)學(xué)生熱愛科學(xué)勇于探索的精神;

  (2)通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受,培養(yǎng)學(xué)生勇于創(chuàng)新,多方位審視問題的創(chuàng)造技巧。

  教學(xué)重點:

  全等三角形的性質(zhì)。

  教學(xué)難點:

  找全等三角形的對應(yīng)邊、對應(yīng)角

  教學(xué)用具:

  直尺、微機(jī)

  教學(xué)方法:

  自學(xué)輔導(dǎo)式

  教學(xué)過程:

  1、全等形及全等三角形概念的引入

  (1)動畫(幾何畫板)顯示:

  問題:你能發(fā)現(xiàn)這兩個三角形有什么美妙的關(guān)系嗎?

  一般學(xué)生都能發(fā)現(xiàn)這兩個三角形是完全重合的。

  (2)學(xué)生自己動手

  畫一個三角形:邊長為4cm,5cm,7cm.然后剪下來,同桌的兩位同學(xué)配合,把兩個三角形放在一起重合。

  (3)獲取概念

  讓學(xué)生用自己的語言敘述:

  全等三角形、對應(yīng)頂點、對應(yīng)角以及有關(guān)數(shù)學(xué)符號。

  2、全等三角形性質(zhì)的發(fā)現(xiàn):

  (1)電腦動畫顯示:

  問題:對應(yīng)邊、對應(yīng)角有何關(guān)系?

  由學(xué)生觀察動畫發(fā)現(xiàn),兩個三角形的三組對應(yīng)邊相等、三組對應(yīng)角相等。

  3、 找對應(yīng)邊、對應(yīng)角以及全等三角形性質(zhì)的應(yīng)用

  (1) 投影顯示題目:

  D、AD∥BC,且AD=BC

  分析:由于兩個三角形完全重合,故面積、周長相等。至于D,因為AD和BC是對應(yīng)邊,因此AD=BC。C符合題意。

  說明:本題的解題關(guān)鍵是要知道中兩個全等三角形中,對應(yīng)頂點定在對應(yīng)的位置上,易錯點是容易找錯對應(yīng)角。

  分析:對應(yīng)邊和對應(yīng)角只能從兩個三角形中找,所以需將

  從復(fù)雜的圖形中分離出來

  說明:根據(jù)位置元素來找:有相等元素,其即為對應(yīng)元素:

  然后依據(jù)已知的對應(yīng)元素找:(1)全等三角形對應(yīng)角所對的邊是對應(yīng)邊,兩個對應(yīng)角所夾的邊是對應(yīng)邊(2)全等三角形對應(yīng)邊所對的角是對應(yīng)角,兩條對應(yīng)邊所夾的角是對應(yīng)角。

  說明:利用“運動法”來找

  翻折法:找到中心線經(jīng)此翻折后能互相重合的兩個三角形,易發(fā)現(xiàn)其對應(yīng)元素

  旋轉(zhuǎn)法:兩個三角形繞某一定點旋轉(zhuǎn)一定角度能夠重合時,易于找到對應(yīng)元素

  平移法:將兩個三角形沿某一直線推移能重合時也可找到對應(yīng)元素

【全等三角形教學(xué)方案】相關(guān)文章:

全等三角形教案05-25

全等三角形的教案02-24

(精華)全等三角形教案11-21

《全等三角形的判定》教案03-18

全等三角形創(chuàng)新題賞析10-26

證明三角形全等的一般思路10-26

全等三角形的識別教案(通用10篇)12-01

全等證明歌訣10-26

關(guān)于認(rèn)識三角形的教學(xué)方案10-08

《認(rèn)識三角形》教學(xué)方案設(shè)計10-08